
How to Attack Biometric Systems in Your Spare Time

Ahmed Obied
Department of Computer Science

University of Calgary
2500 University Drive N.W.

Calgary, Alberta, Canada T2N 1N4

obieda@cpsc.ucalgary.ca

ABSTRACT
Biometric systems were proposed and developed to pro-
vide a better and stronger factor of authentication. Such
systems authenticate individuals based on physical and
behavioral traits such as fingerprints, iris, face, palm
print, hand geometry, voice, etc. The use of biometric
traits to replace existing passwords or as access keys
has proven to be highly secure against physical attacks.
It is a fact that malicious attacks are getting smarter,
more widespread and increasingly difficult to detect,
and dozens more are added to the menagerie each day.
Attacking biometric systems physically is quite difficult
indeed. However, by mounting digital attacks one can
see how biometric systems are vulnerable. We discuss
the different types of software and hardware vulnera-
bilities that exist in biometric systems, and show how
biometric template security can be compromised. We
present a new attack point at the application level that
has not been addressed and discussed in previous work.
We also describe how biometric cryptosystems can over-
come some of the disadvantages in traditional biometric
recognition systems, and show how such systems can be
used effectively in Digital Rights Management (DRM)
systems.

Keywords
Biometrics, Templates, Security, Privacy, Cryptogra-
phy, Attacks, Hash Functions, Digital Rights Manage-
ment Systems

1. INTRODUCTION
In today’s highly technical world, access to restricted
computers, networks, services, areas, etc is usually done
via the use a token (e.g., key) or knowledge (e.g., pass-
word). A password is something a user (or a group of
users) knows and nobody elses, and a token is some-
thing a user (or a group of users) has and nobody does.
Traditional authentication systems that are based on
tokens or knowledge have been used for many years de-
spite their disadvantages. How many times have you
tried to login to your email account to read important

email but the mail server refused to grant you access
because you simply forgot the password? How many
times have you tried to go to your apartment or house
but you were not able to access it because you simply
lost the keys? How many times you have been a vic-
tim of identify theft because some person was able to
get your password which you wrote down somewhere
or found your keys which you left somewhere to gather
sensitive information about you and impersonate you?
The list of questions can go on and on with the existing
authentication schemes used in today’s highly technical
world. So what can we do to overcome these problems?
The answer to this question is surprisingly simple: we
use biometric technologies.

Almost everyone in the world have fingers, eyes, voice,
hands, and a face. Have you ever forgotten any of those
body parts? Not very likely! [8] What if we could use
those body parts instead of tokens and passwords to au-
thenticate you? Wouldn’t that be more convenient and
more secure? The answer is simply yes. Humans have
used body characteristics such as face, voice, and gait
for thousands of years to recognize each other [3] but
only recently humans started developing and deploy-
ing biometric based systems to authenticate individuals.
Biometrics is the science of establishing or determining
an identity [4] based on the physical or behavioral traits
of an individual such as fingerprints, iris, face, palm
print, hand vein, voice, keystroke, retina, facial ther-
mogram, etc. Biometric systems are essentially pattern
recognition systems that read as input biometric data,
extract a feature set from such data, and finally com-
pare it with a template set stored in a database. If the
extracted feature set from the given input is close to
a template set stored in the database then the user is
granted access.

The use of biometric systems has introduced a conve-
nient, efficient, and secure alternative to traditional au-
thentication schemes (e.g., token-based and knowledge-
based). However, we must note that such systems are
susceptible to various types of security attacks that are
aimed at undermining the integrity of the authentica-

Sensor Feature Extractor Matcher Application Device

Stored Templates

Type 1 Type 2

 Type 3

 Type 4 Type 5

Type 6

 Type 8

Type 7

Type 9

Figure 1: Biometric System and the nine different points of attack.

tion process by either circumventing the security af-
forded by the system or deterring the normal function-
ing of the system [4]. Such attacks are raising concerns
as more and more biometric systems are being deployed
and used in commercial, government and forensic appli-
cations. This, along with the increase size of the popula-
tion using these systems and the expanding application
area (visa, border control, health care, welfare distri-
bution, e-commerce, etc) may lead to possible finance,
privacy, and security breaches [12].

In this paper, we show an in-depth analysis of the differ-
ent types of software and hardware vulnerabilities that
exist in biometric systems, and describe how such vul-
nerabilities can be exploited. We present a new attack
point at the application level of a biometric system. We
also discuss the idea behind biometric cryptosystems
and show how such systems can be effectively used in
some applications.

2. BIOMETRIC SYSTEM MODEL
To fully understand how biometric systems can be at-
tacked, we must first understand the biometric system
model and the different modules it consists of. Figure
1 shows a generic biometric system and the eight differ-
ent points of attack as proposed by [7]. We claim that a
9th point of attack exists at the application level. This
claim will be discussed in section 4.1.9. Any biometric
system consists of the following modules:

2.1 Scanner
The scanner module in a biometric system is used to
scan and acquire the biometric data (e.g., fingerprint,
hand vein, palm print, etc) of an individual in a form
of an image, video, audio or some other signal. The
scanner module is vulnerable to a type 1 attack which
is discussed in section 4.1.1.

2.2 Feature Extractor
The feature extractor module in a biometric system op-
erates on the signal sent by the scanner module to ex-
tract a feature set i that represents the given signal.
The extracted feature set i is sent to the matcher for

processing. The feature extractor module is vulnerable
to a type 3 attack which is discussed in section 4.1.3.

2.3 Stored Templates
The stored templates module in a biometric system
is usually a database that stores pre-acquired (usually
during users enrolment) feature sets called templates.
These templates are queried by the matcher module to
find a match for a given feature set i. The database
that stores the templates is vulnerable to a type 6 at-
tack which is discussed in section 4.1.6.

2.4 Matcher
The matcher module in a biometric system is the main
module in such system. The matcher receives a feature
set i from the feature extractor module and compares i
with the templates stored in the database. Match scores
are generated after each comparison and once all com-
parisons are done, the matcher processes these match
scores in order to either determine or verify the identify
of an individual [4]. The matcher module is considered
the main module in a biometric system because its the
part that makes the decision (“yes” if there is a match
or “no” if there is no match). The matcher is vulnerable
to a type 5 attack which is discussed in section 4.1.5.

2.5 Application Device
The application device module in a biometric system re-
ceives an answer from the matcher and acts accordingly.
If the application device receives a “no” then it denies
access. If the application device receives a “yes” then it
grants access. The application device is vulnerable to a
type 9 attack as we claim.

3. GENERIC SECURITY THREATS
Any system (including biometric systems) are suscepti-
ble to various types of threats. These threats are dis-
cussed below:

3.1 Denial of Service
An adversary overwhelms computer and network re-
sources to the point that legitimate users can no longer
access the resources. For example, an adversary may

Manufacturer Model Technology Date Difficulty
Identix TS-520 Optical Nov. 1990 First attempt
Fingermatrix Chekone Optical Mar. 1994 Second attempt
Dermalog DemalogKey Optical Feb. 1996 First attempt
STMicroelectronics TouchChip Solid state Mar. 1999 First attempt
Veridicon FPS110 Solid stat Sep. 1999 First attempt
Identicator DFR200 Optical Oct. 1999 First attempt

Table 1: Attack at the scanner (adapted from [7]).

exploit a weakness in the TCP/IP stack’s 3-way hand-
shake, and overwhelm an HTTP server with a large
number of SYN packets with spoofed and unused IP
addresses to start the first step in the 3-way handshake.
When the HTTP server tries to reply with a SYN/ACK
packets (second step in the 3-way handshake), the pack-
ets will be sent to the spoofed and unused IP addresses.
Since the IP addresses are unused (technically they do
not exist), the packets will be traversing the network for
quite a while before any router in the Internet starts
sending the HTTP server ICMP packets with the er-
ror message “host unreachable”. This type of attack
exhausts both the HTTP server and the network re-
sources. If the adversary’s packets are sent very fast
and by large numbers, the HTTP server can go down
and no longer reply to any connection requests from
legitimate users.

3.2 Circumvention
An adversary gains access to data or computer resources
that he may not be authorized to access. For example, if
a network service (e.g., telnet) in some network N has a
bug x (e.g., buffer overflow), an adversary can write an
exploit for x to download (from some IP address on the
Internet) and install a sniffer on the vulnerable machine
to gather usernames and passwords. The adversary can
use these usernames and passwords to access other com-
puters on network N and find confidential data.

3.3 Repudiation
A legitimate user accesses the resources offered by an
application and then claim that an intruder had cir-
cumvented the system. For example, a bank clerk may
modify the financial records of a customer C and then
deny responsibility by claiming that an intruder could
have possibly stolen from C [4].

3.4 Covert acquisition
An adversary compromises and abuses the means of
identification without the knowledge of a legitimate user.
For example, a worker Wa can write his password on a
piece of paper and leave it on his desk at work. His
co-worker Wb finds the piece of paper and copies the
password. Since Wb has the password of Wa then Wb

can use it to access Wa’s account.

3.5 Collusion

In any system, there are different user privileges. Users
with super-user privileges have access to all of the sys-
tem’s resources. Collusion occurs when a user with
super-user privileges abuses his privileges and modifies
the system’s parameters to permit incursions by an in-
truder. For example, a system administrator of a Linux
server can open up a privileged port (between 1 and
1024) on the server to give an intruder a chance to
access the server easily. Privileged ports are usually
known as trusted ports so any traffic that is sent to a
privileged port usually passes through firewalls without
any checking. It is often mentioned that the easiest way
to break a security system is to compromise the system
administrator [5].

3.6 Coercion
A legitimate user is forced to give an intruder access to
the system. For example, an ATM user could be forced
to give away her ATM card and PIN at gunpoint [5].

4. BIOMETRIC SECURITY THREATS
Figure 1 shows a biometric system modules and nine
different points of attack. These points of attack are
discussed in detail below.

4.1 Points of Attack
4.1.1 Type 1
This point of attack is known as “Attack at the scan-
ner”. In this attack, the attacker can physically destroy
the recognition scanner and cause a denial of service as
described in section 3.1. The attacker can also create
a fake biometric trait such as an artificial finger to by-
pass fingerprint recognition systems, or inject an image
between the sensing element and the rest of the scanner
electronics to bypass facial recognition systems.

Putte and Keuning [6] mentioned that the problem with
most of the fingerprint scanners used these days is dis-
tinguishing between a real finger and a well created arti-
ficial (dummy) finger. The authors tested several finger-
print scanners to check whether such scanners will ac-
cept the dummy finger. Two methods were used to du-
plicate a real finger: with and without the co-operation
of the owner. With the co-operation of the owner, the
authors first created a plaster cast of the finger and the
cast is then filled with silicon rubber to create a wafer-
thin silicon dummy. The authors mentioned that the

dummy can be glued to anyone’s finger without it be-
ing noticeable to the eye. Without the co-operation of
the owner, it is necessary to obtain a print of the finger
from a surface or a glass. The authors claim that every
dental technician has the skills and equipment to create
a dummy from a print of the finger. Putte and Keuning
claim that since 1990 several fingerprint scanners have
been tested using dummy fingers and all tested scanners
accepted a dummy finger as a real finger. Table 1 shows
in detail the scanner’s manufacturer, model, technology,
date on which the scanners have been tested, and finally
the number of attempts required to get the dummy fin-
ger accepted.

4.1.2 Type 2
This point of attack is known as “Attack on the channel
between the scanner and the feature extractor” or “Re-
play attack”. When the scanner module in a biometric
system acquires a biometric trait, the scanner module
sends it to the feature extractor module for processing.
In this attack, the attacker intercepts the communica-
tion channel between the scanner and the feature ex-
tractor to steal biometric traits and store it somewhere.
The attacker can then replay the stolen biometric traits
to the feature extractor to bypass the scanner.

4.1.3 Type 3
This point of attack is known as “Attack on the feature
extractor module”. In this attack, the attacker can re-
place the feature extractor module with a Trojan horse.
A Trojan horse program, named after the wooden arti-
fact from Greek methodology that contained more than
could be seen on the surface, refers to an executable
code that is not a translation of the original program
but was added later, usually maliciously, and comes into
the system disguised as the original program [5]. Trojan
horses in general can be controlled remotely. Therefore,
the attacker can simply send commands to the Trojan
horse to send to the matcher module feature values se-
lected by him.

4.1.4 Type 4
This point of attack is known as “Attack on the channel
between the feature extractor and matcher”. This attack
is similar to the attack described in section 4.1.2. The
difference is that the attacker intercepts the communi-
cation channel between the feature extractor and the
matcher to steal feature values of a legitimate user and
replay them to the matcher at a later time.

An example of this type of attack would be what Adler
[1] proposed. Adler presented an approach that ex-
pands on the idea of Hill [2] and uses a “Hill Climb-
ing Attack”. The author proposed an algorithm that
regenerates sample images from templates using only
match score results generated by the matcher module.
Adler implemented a software that has access to a local

Synthetic Template
Generator

 Attack Module

Fingerprint
Matcher

Template
Database

 To Other Modules

Figure 2: Attack System (adapted from [13])

database that contains facial images and a network ac-
cess to 3 commercial face recognition servers to achieve
his goals of synthetically reconstructing a face image.
Adler’s algorithm begins with only the database ID of
the target person. The algorithm starts by selecting
an initial image from the local database and sending
the initial image feature values to the matcher mod-
ule. The matcher module generates match scores and
based on these match scores, the initial image is modi-
fied. In every step, several facial images are multiplied
with a weight and added to the current candidate image.
The modified image that generate the highest matching
score is used as the new candidate image. This process
is repeated several times until there is no major im-
provement in the matching score. Once this happens,
the current candidate image will have a good resem-
blance to the target image.

A similar attack was proposed by Uludag and Jain [12].
Uludag and Jain implemented an attack system as shown
in figure 2 for a minutiae-based fingerprint authentica-
tion system that uses a “Hill Climbing Attack”. The
attack system generates a minutiae set that results in
a high matching score to gain access to the system in
place of a legitimate user. Minutiae points consist of
ridge endings and ridge bifurcations. All minutiae based
systems use the 2D location (x, y) of the minutiae and
the orientation θ associated with the minutiae as the
attributes [12]. Uludag and Jain used the attributes of
the minutiae (x, y, θ) in their attack system. To at-
tack user’s i account, Uludage and Jain’s attack system
does the following (Assuming that there is a decision
threshold value used by the fingerprint matcher module
Sthreshold that the attacking system does not know):

1. Generate a number of synthetic templates (T 1
i , T 2

i ,
T 3

i , ..., Tn
i) where n is fixed.

2. Send the generated templates in step 1 to the fin-
gerprint matcher module and accumulate the cor-
responding matching scores (S(Di, T

1
i)), S(Di, T

2
i),

S(Di, T
3
i), ..., S(Di, T

n
i)) where Di is the tem-

plate corresponding to user i in the database and
S(Di, T

j
i) is the matching score between Di and

T j
i .

3. Declare (T best
i) to be the template resulting in the

highest matching score and (Sbest(Di)) to be the
highest matching score.

4. Modify T best
i to obtain Tmodified

i by perturbing
an existing minutia or adding a new minutia or
replacing an existing minutia or deleting an exist-
ing minutia. For every time you create Tmodified

i ,
check if the matching score S(Tmodified

i) is larger
than Sbest(Di). If yes then change T best

i to Tmodified
i

and change Sbest(Di) to S(Tmodified
i).

5. If the best matching score Sbest(Di) > Sthreshold

then the matcher will return “yes” and allow the
attacking system to access user’s i account. Oth-
erwise, if Sbest(Di) < Sthreshold then go to step
4.

Uludag and Jain’s attack system was able to break three
accounts at the 132nd, 271st, and 871st attempts (for
simulating an “easy” account, a “medium” account, and
a “hard” account, respectively, in terms of the number
of access attempts necessary to break them) [12].

4.1.5 Type 5
This point of attack is known as “Attack on the matcher”.
This attack is similar to the attack described in section
4.1.3. The difference is that the attacker replaces the
matcher with a Trojan horse. The attacker can send
commands to the Trojan horse to produce high match-
ing scores and send a “yes” to the application to bypass
the biometric authentication mechanism. The attacher
can also send commands to the Trojan horse to produce
low matching scores and send a “no” to the application
all the time causing a denial of service.

4.1.6 Type 6
This point of attack is known as “Attack on the system
database”. In this attack, the attacker compromises the
security of the database where all the templates are
stored. Compromising the database can be done by
exploiting a vulnerability in the database software or
cracking an account on the database. In either way,
the attacker can add new templates, modify existing
templates or delete templates.

Hill [2] described a way to create an image of a fin-
gerprint based on the information contained within the

#include <stdio.h>
#include <stdlib.h>
#include "biometric.h"

{

void password_authentication()

 .
 .

}

 .

int main()
{

 biometric_authentication();
else
if (use_password_authentication())
 password_authentication();

 return EXIT_SUCCESS;
}

 if (use_biometric_authentication())

 strcpy((char *)&pwd,get_pwd());

#define BUFFSIZE 256

 char pwd[BUFFSIZE];

Figure 3: Vulnerable C code

stored template (reverse engineering). Hill used a neu-
ral network classifier to predict the shape of the fin-
gerprint based on minutiae points. The neural network
takes as input minutiae points (where each minutiae
point is characterized using its 2D location, ridge, cur-
vature and orientation) and predicts the fingerprint’s
class. Once the class has been predicted, a synthetic fin-
gerprint image is generated. Hill’s proposed technique
is observed to work on a database of 25 fingerprints
from arch class [4].

4.1.7 Type 7
This point of attack is known as “Attack on the chan-
nel between the system database and matcher”. This
attack is again similar to the attack in section 4.1.2. In
this attack, the attacker intercepts the communication
channel between the database and matcher to either
steal and replay data or alter the data.

4.1.8 Type 8
This point of attack is known as “Attack on the chan-
nel between the matcher and the application”. In this
attack, the attacker intercept the communication chan-
nel between the matcher and the application to replay
previously submitted data or alter the data.

frame pointer
return address
argc
argv

frame pointer
return address

Stack pointer

main stack frame

.text section

password_authentication code

OS code

Before attacking

After attacking
.
.

.

stack frame

main code

passwod_authentication

 Low memory

 High memory

pwd(256 bytes)

Buffer growth

Stack pointer

Figure 4: Stack Smashing Attack

4.1.9 Type 9
We claim that a 9th point of attack exists in biometric
systems. We call this attack “Attack on the applica-
tion”. Bugs are a consequence of the nature of the pro-
gramming task that no one can deny. It is a fact that
any software has at least one bug in it. Since biomet-
ric authentication systems are not 100% accurate, most
of these systems use traditional authentication schemes
as a backup. For instance, fingerprint readers shipped
with laptops these days force you to create a backup
password that you can use to access the system if the
fingerprint reader does not recognize you for some rea-
son. If a thief tries to break into a house, he can use
the main entrance (door) to break into the house or
he can figure out another way to enter the house (e.g.,
window). Therefore, instead of attacking the biometric
system directly, one can indirect ways to attack it. One
way is by using brute force attacks (e.g., dictionary at-
tacks) that can be mounted against the application to
figure out the password. Another way would be to ex-
ploit a bug in the application that does the password
authentication. If the application in a biometric system
suffers from a critical bug (e.g., buffer overflow, double
free, etc) then a skilled attacker can exploit this bug by
sending the application a crafted input to change the
control flow of the program. By changing the flow of
the program, the attacker can run code of his choosing
with the privileges that the running application have.
If the attacker can run code of his choosing then the
security of all the modules in a vulnerable biometric
system is compromised. For example, the attacker can
run code that will download a Trojan horse code from
the Internet to replace the modules in the biometric sys-
tem. The attacker can also run code that will install a
sniffer on the compromised system to make it easier to
intercept the communication channels in the biometric

system.

In figure 3, we show a simple C code that can possi-
bly be part of a biometric system code. The vulnerable
points in the code are in the dashed boxes which clearly
show that the program is vulnerable to a stack smash-
ing attack. A 256 bytes local buffer has been declared
and the C function “strcpy” has been used to copy the
given password into the local buffer. The C function
“strcpy” does not do any bounds checking on the buffer
(the same goes for other C functions like strcat, gets,
etc). What do think will happen if we try to input 1024
bytes into the buffer pwd? Of course a segmentation
fault will occur. Segmentation faults occur when you
try to access an address that does not belong to your
program’s address space. Since we know that the buffer
grows towards high memory (in little-endian architec-
tures), then it is possible to overwrite the frame pointer
and the return address in the password authentication
function’s stack frame. The return address in the pass-
word authentication function’s stack frame points to the
instruction that follows the call to it in main. In our
case, it points to “return EXIT SUCCESS” somewhere
in the .text section in memory. To be able to run a code
of our choosing which is 200 bytes long then out crafted
exploit string (which will be in machine code) can be
as follows: 56 bytes nop instructions (90 in machine
code) + 200 bytes code + 4 bytes nop instructions (to
overwrite the frame pointer) + address of pwd on the
stack (4 bytes long). Figuring out the address of pwd
on the stack can be done using trial and error. If we
successfully inject the exploit string into pwd then once
the password authentication function is done execut-
ing, there will be a jump to where the return address
is pointing to. Since we changed the return address to
point to pwd on the stack (say 0x12345678), then the

Encrypted secret Released secret

 Decryption

Key

Matching
Yes

No

Deny AccessFingerprint

Figure 5: DRM system based on biometrics

following instruction: jmp 0x12345678 will be executed
and the injected code in pwd will run (the nop instruc-
tions only waste CPU cycles). The attack is shown in
figure 4.

5. BIOMETRICS AND CRYPTOGRAPHY
Biometric cryptosystems combine biometrics and cryp-
tography at a level that allows biometric matching to
effectively take place in cryptographic domain, hence
exploiting the associated higher security [12]. These
systems are gaining popularity since they can be used
effectively in Digital Rights Management (DRM) sys-
tems to make it hard to copy or share digital media
illegally. Uludag, Pankanti, Prabhakar, and Jain [13]
presented several methods that bind a cryptographic
key with the biometric template of a user stored in a
database in such a way that the key cannot be revealed
without a successful biometric authentication. The idea
is as follows (shown in Figure 5): suppose that Alice, a
legitimate user, is enrolled on a DRM system that uses
biometric based authentication. If Alice wants to ac-
cess a certain digital content C then she will have to go
through the following steps (we will refer to the DRM
system as SDRM):

1. Alice selects the digital content C that she wants
to access.

2. The SDRM asks Alice to provide her sample bio-
metric data.

3. Alice provides her sample biometric data and the
SDRM tries to find a match in the database. Since
Alice is enrolled in the system then the SDRM will
find a match and release a key K.

4. The SDRM retrieves the content that Alice wanted
to access but in an encrypted form E(C).

Scanner Hash(biometric data)

System Database

 Scanner Hash(biometric data)

Matcher

Enrollement

Authentication

Figure 6: Using hash functions in biometric sys-
tems

5. The SDRM uses the key K it released in step 3 to
decrypt E(C) and obtain C.

6. The SDRM sends C to Alice.

Now suppose that Mallory, an illegitimate user, tries to
impersonate Alice to access a certain media content C.
In step 3 above, Mallory will provide the SDRM with her
sample biometric data but since Mallory is not enrolled
in the system then the SDRM will not find a match
and hence deny Mallory from accessing C. Uludag,
Pankanti, Prabhakar, and Jain [13] refer to the above
method of integrating biometrics into a cryptosystem
as the method of biometric based key release. As you
might have noticed, the above method is vulnerable to
many different types of attacks (e.g., replay attacks,
Trojan horse attacks, etc). To be able to improve the
above method, we need to ask ourselves the following
questions (adapted from [13]):

1. Is it possible to design a biometric system such
that if the biometric template in an application
is compromised, the biometric signal itself is not
lost forever and a new biometric template can be
issued?

2. Is it possible to design a biometric template such
that different applications are not able to use the
same biometric template, thus securing the bio-
metric signal as well as preserving privacy?

3. Is it possible to generate/release a cryptographic
key using biometric information such that the cryp-
tographic key management is secure and conve-
nient?

According to Uludag, Pankanti, Prabhakar, and Jain it
is possible to integrate biometric matching and crypto-
graphic techniques to solve all of the above problems.

To solve questions 1 and 2 above, one can use a one-
way hash function (e.g., MD5, SHA-1, etc). One-way
functions are known to be computationally infeasible to
invert so instead of storing the original biometric signal,
say x, in the system database we store its transformed
version H(x). During authentication, the biometric
sensor would morph the signal using the same trans-
form H (figure 6) and the biometric matching would be
carried out in the transformed space [13]. Since one-way
functions cannot be inverted then if H(x) ever gets com-
promised, it will be impossible to get x. Furthermore,
new biometric templates can always be issued using a
different transform (function). One of the properties of
one-way functions is that it is computationally infea-
sible to find x and y such that H(x) = H(y). There-
fore, if the biometric signal x varies then the matcher
will have difficulty in carrying out the matching in the
transformed space and hence increase the authentica-
tion error rate significantly.

To solve question 3 that was addressed earlier, we hide
the cryptographic key in the user’s biometric template
itself (e.g., via a trusted and secret bit-replacement al-
gorithm that can replace, say, the least significant bits
of the pixel values/features of the biometric template
with the cryptographic key [13]). All what the system
has to do is extract the key from the biometric data
upon a successful biometric match and release it. The
security of this method is highly dependent on the re-
trieval algorithm and the secrecy of key hiding.

Many other approaches (e.g., the use of digital signa-
tures, fuzzy commitment, etc) has been proposed to
utilize the use of biometric cryptosystems. However,
all of the proposed approaches still suffer from security
problems.

6. CONCLUSION
Biometric systems provide a better and stronger fac-
tor of authentication. Such system authenticate indi-
viduals based on what they are (e.g., fingerprint, palm
print, etc) instead of what they know (e.g., password,
PIN) or what they have (e.g., smartcard). Biometric
systems proved to be more effective and convenient for
users since they do not have to worry about forgetting
passwords or losing smartcards, etc. In traditional au-
thentication systems, however, if someone compromises
your password or smartcard then the system adminis-
trator can revoke the password or smartcard and issue
you a new one. In biometric authentication systems,
if someone compromises your biometric data template
then it is lost forever. No one can issue you, for in-
stance, a new fingerprint unless you figure out a way to
replace your fingers.

In this paper, we discussed in-depth the different types
of vulnerabilities that exist in biometric systems. We
presented a new attack point at the application level

that allows the attacker to compromise the biometric
system without going through the sensor module. We
described how biometric cryptosystems can overcome
some of the disadvantages in traditional biometric au-
thentication systems and improve their security. Fi-
nally, we showed how biometric cryptosystems can be
used effectively in Digital Rights Management (DRM)
systems.

7. REFERENCES
[1] A. Adler. Can images be generated from

biometric templates? In Biometric Consortium
Conference, 2003.

[2] C. Hill. Towards reconstructing fingerprints from
minutiae points, b.s. thesis, australian national
university,
http://chris.fornax.net/biometrics.html. 1999.

[3] A. K. Jain, A. Ross, and S. Prabhakar. An
introduction to biometric recognition. In Proc. of
IEEE Transactions on Circuits and Systems for
Video Technology, Special Issue on Image- and
Video-Based Biometrics, volume 14, pages 4 – 20,
2004.

[4] A. K. Jain, A. Ross, and U. Uludag. Biometric
template security: Challenges and solutions. In
Proc. of 13the European Signal Processing
Conference (EUSIPCO), 2005.

[5] D. Maltoni, D. Maio, A. K. Jain, and
S. Prabhakar. Handbook of Fingerprint
Recognition. Springer, 2003.

[6] T. Putte and J. Keuning. Biometrical fingerprint
recognition: don’t get your fingers burned. In
Proc. IFIP TC8/WG8.8, Fourth Working Conf.
Smart Card Research and Adv. App., pages 289 –
303, 2000.

[7] N. Ratha, J. H. Connell, and R. M. Bolle. An
analysis of minutiae matching strenght. In Proc.
Audio and Video-based Biometric Person
Authentication (AVBPA), volume 5306, pages 223
– 228, 2001.

[8] P. Reid. Biometrics for Network Security.
Prentice Hall, 2003.

[9] A. Ross, J. Shah, and A. K. Jain. Towards
reconstructing fingerprints from minutiae points.
In SPIE, Biometric Technology for Human
Identification II, volume 5779, pages 68 – 80,
2005.

[10] B. Schneier. The uses and abuses of biometrics.
Comm. ACM, 42:136, 1999.

[11] C. Soutar. Biometric system security, white
paper, bioscrypt, http://www.bioscrypt.com/.

[12] U. Uludag and A. K. Jain. Attacks on biometric
systems: a case study in fingerprints. In Proc. of
SPIE, Security, Seganography and Watermarking
of Multimedia Contents VI, volume 5306, pages
622 – 633, 2004.

[13] U. Uludag, S. Pankanti, S. Prabhakar, and A. K.
Jain. Biometric cryptosystems: issues and
challenges. In Proc. of IEEE, volume 92, pages
948 – 960, 2004.

