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Abstract

Malicious attacks are getting smarter, more widespread and increasingly difficult to
detect, and dozens more are added to the menagerie each day. Identifying and classify-
ing the type of malicious program spreading across global networks is a crucial step in
developing strategies to contain and eradicate it. This paper describes the most com-
mon attacks used these days to paralyze computer and network resources. It provides
network traces of malicious traffic and strategies for providing better countermeasures.
Data sets captured at the University of Calgary are analzyed to classify intrusion at-
tempts and identify security holes in the University’s network.
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1 Introduction

Computers are a must in today’s highly technical world. They are used in schools,
universities, hospitals, military, space shuttles and many more. Their usage increased
tremendously in the last few years and millions of users joined this technological rev-
olution due to the use of the Internet that made the world look so small and at our
disposal. However, the widespread use of the Internet caused the number of warnings
being made about the dark side of our technological revolution to increase and we are
becoming uniquely vulnerable to many mysterious and malicious threats. Malicious
software has been and still used to spread mayhem, enact political revenge on a cor-
porate target, steal data, increase access to a network resource, hijack networks, deny
companies use of their network, or sometimes simply gain bragging rights.

Devising effective defenses against network attacks is a difficult and elusive goal for
system administrators and information security researchers. The wide range of com-
puter hardware, the complexity of operating systems, the variety of potential vulnera-
bilities, and the skill of many attackers combine to create a problem that is extremely
difficult to address [2]. To be able to accurately identify, classify, and provide better
countermeasures against the many types of malicious threats, one must first under-
stand how the authors of malware think, what motivates them, and what are the tools
and techniques they use. This paper describes the background literature needed to
understand many network attacks, discusses the types of people involved in writing
malicious code, and gives a detailed description of the common attacks used these days
along with some traces and analysis of real data sets.

2 Background

Essential background literature to understand the foundations of many network attacks
and their countermeasures are described below:

2.1 Networking

Is it possible to implement a security solution without understanding TCP/IP? The
answer to this question is no. TCP/IP stands for the Transmission Control Proto-
col/Internet Protocol. It is a suite for a number of protocols that are required to allow
hosts on the Internet to communicate. The following four layers comprise the TCP/IP
Internet model [9]:

1. Application layer: Handles implementation of user applications.

2. Transport layer: Manages end-to-end communications between hosts.

3. Network layer: Gets data from source to destination.

4. Link layer: Manages data transfer to and from physical medium.

The most relevant and important network protocols are described below:

- IP: The Internet Protocol is used at the Network layer. IP is responsible for
getting a packet from the source IP address to the destination IP address where
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such addresses are defined in the IP header. Important fields in the IP header
are: the protocol number field which identifies what protocol is used (TCP, UDP,
or ICMP), the flags and fragment offset fields that are used to keep track of the
fragments when a datagram has to be split up into smaller packets, and the time
to live (TTL) field which is a number that is decremented whenever the datagram
passes through a router.

- TCP: The Transmission Control Protocol is a connection oriented protocol that
offers the application (client) a reliable connection to a program (server) on an-
other machine. Once this connection is established, the TCP protocol guarantees
the correct (both in content and in order) delivery of the data transmitted through
this circuit.
A TCP header follows the IP header (if the TCP protocol is to be used) supplying
information specific to the TCP protocol. TCP is a sliding window protocol with
time-outs and retransmits. Outgoing data must be acknowledged by the far-
end TCP. Acknowledgments can be piggybacked on data. Important fields in
the TCP header are: the source and destination port numbers which identify
services, sequence and acknowledgment numbers, and the Control Bits (URG:
Urgent Pointer field significant, ACK: Acknowledgment field significant, PSH:
Push Function, RST: Reset the connection, SYN: Synchronize sequence numbers,
FIN: No more data from sender).
To establish a connection between two hosts, the TCP three-way handshake is
used which works as follows (C refers to the client and S refers to the server):

1. C sends a SYN packet to S
2. S sends a SYN/ACK packet to C
3. C sends an ACK packet to S

To terminate a previously established connection, the four-way handshake is used
which works as follows (C refers to the client and S refers to the server):

1. C sends a FIN packet to S
2. S sends an ACK packet to C
3. S sends a FIN packet to C
4. C sends an ACK packet to S

- UDP: The User Datagram Protocol is a connectionless protocol. UDP takes the
data an application provides, packs it into a UDP packet, and hands it to the
Network layer. The packet is then put on the wire, and sent to the other end.
There is no way to guarantee that the packet will reach its destination. Important
fields in the UDP header are: the source and destination port numbers which
identify services.

- ICMP: The Internet Control Message Protocol is mainly used for managing
and controlling IP. With it, you can force routing options, declare a destination
unreachable, etc. The most widely used functions, however, are echo-request and
echo-reply. These two functions are used to see if you can reach a certain host
on your network. Important fields in the ICMP header: the message type (e.g.
echo-request, echo-reply, time-exceeded in transit, etc).

3



Implementing a network protocol or application requires an API to work with. The
sockets API is by far the most widely used networking API. A socket is one end-point
of a two-way communication link between two programs running on the network. One
type of sockets which are known as raw sockets are of particular interest to attackers.
Raw sockets offer the programmer absolute control over the data which is being sent
or received through the network. In other words, the programmer gets full control over
every single bit which is sent to a network. Skilled attackers build their own crafted
packets that can bypass firewalls and intrusion detection systems, hijack sessions, cause
systems to crash, consume bandwidth, etc.

2.2 Cryptography

Cryptography is the study of how to make information undecipherable except to the
people that you wish to understand it. Cryptography comes from the Greek words for
“secret writing” and it has a long and colorful history going back thousands of years
[11]. The basic idea of applying any cryptographic technique is simple. Consider a
sender S wanting to transmit message M to a receiver R. To protect M from passive
and active attacks, the sender S can encrypt M into an unintelligible message C and
send it to R. Upon receiving M , R decrypts C into its original form M . Encryption
and decryption are done using cryptographic techniques parameterized by keys. The
original form of the message before encryption is called plaintext and after encryption
it is called ciphertext.

A cryptosystem where encryption and decryption of a message M are done us-
ing the same key is known as a symmetric cryptosystem. On the other hand, if the
cryptosystem uses two different keys for encryption and decryption then it is known
as an asymmetric cryptosystem. Examples for symmetric cryptosystems would be
DES (Data Encryption Standard) and AES (Advanced Encryption Standard) and for
asymmetric cryptosystems would be RSA, and ELGamal.

One important application of cryptography is the use of hash functions. A hash
function H takes a message M of arbitrary length as input and outputs a fixed sized bit
string. Hash functions are one-way functions which means that for any given M , it is
easy to compute h = H(M) where h is the hash value. However, it is computationally
infeasible to find an M such that M = H−1(h)

Cryptographic techniques and applications are used to provide data confidentiality,
data integrity, nonrepudiation, authentication, and many more. Such techniques have
been used in many network protocols to provide better security services and mecha-
nisms (e.g. SSH, SSL).

2.3 Firewalls

In the context of buildings, a firewall is a fireproof wall intended to prevent the spread
of fire from one room or area of a building to another. It has acquired a related meaning
in the context of the Internet. A typical intranet these days is not connected to the
Internet directly. Instead, the intranet is connected to a firewall, and the firewall is
connected to the Internet. A firewall is a computer system dedicated to protect a LAN
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(Local Area Network) from the Internet. It is usually placed at the entry point of the
LAN it protects and it can be simple packet filters to an enormously complex computer
systems with extensive logging systems, intrusion detection systems, etc.

A personal firewall is a software that is installed on a single system which receives,
inspects and makes decisions about all incoming and outgoing traffic from the LAN to
the system and vice versa.

2.4 Intrusion Detection Systems

Building an intrusion prevention system that can prevent all malicious attacks is a
desired but, at the same time, an impossible task. Any intrusion prevention system
will fail at one point and hence the second line of defense for any system is to use an
intrusion detection system which can be used to identify the attacker and strengthen
the intrusion prevention facility [11].

Intrusion detection is the art of identifying attempted or ongoing attacks on a
computer system or network. There are two approaches that intrusion detection tech-
nologies use:

1. Statistical Anomaly Detection: This type of detection involves the collection
of data relating to the behavior of legitimate users over a period of time. The
statistical tests are then applied to observed behavior to determine with a high
probability whether the behavior is not legitimate user behavior. Such type of
detection can be further divided into two types:

- Threshold detection: This approach involves defining thresholds, inde-
pendent of user, for the frequency of occurrences of various events [11].

- Profile based: A profile of the activity of each user is developed and used
to detect changes in the behavior of individual accounts [11].

2. Rule-Based Detection: This type of detection involves defining a set of rules
that can be used to decide that a given behavior is that of an intruder. Such type
of detection can be further divided into two types:

- Anomaly Detection: Rules are developed to detect deviation from previ-
ous usage patterns [4].

- Penetration identification: An expert system approach that searches for
suspicious behaviour in network traffic[8].

Strengths of Intrusion Detection Systems:

- Provides worthwhile information about malicious network traffic.

- Can be programmed to minimize damage.

- Help identify the source of the incoming probes or attacks.

- Can collect forensic evidence, which can be used to identify intruders.

- Alerts security personnel that a network invasion may be in progress.

Weaknesses of Intrusion Detection Systems:

- Produces false positive (false alarms).

5



- Produces false negative (failed to alarm).

- Large-scale attacks could overwhelm a sensor.

2.5 Attackers

The first line of defense against malware is to know who are the people responsible for
writing or releasing malicious code and what motivates them. A longstanding debate
exists in the computer security field about the correct terminology to use to describe
an attacker [1]. Due to the misuse of the word hacker by the media, the public always
refer to people penetrating systems as hackers. However, at one point in time, a hacker
was someone who is obsessed by programming, someone who programs quickly and
enjoys stretching the capacity of operating systems as opposed to a normal user who
will be satisfied by knowing the minimum that will get the job done. An example of
real hackers would be the people who wrote UNIX and who were called at that time
the UNIX hackers. To clarify the true picture, a list of the most common terms used
in the computer security field to describe attackers are as follows:

- Script Kiddies: This group of people call themselves real hackers but in fact
some are novice programmers and others are not even programmers at all. A
script kiddie searches the Internet for exploits (malicious code) written by highly
skilled programmers and use these exploits to break into systems. Many of the
attacks these days are caused by script kiddies who release malicious code and
wreak havoc. An example for such acts would be the release of Code Red II
which was an identical copy of Code Red I except for one string in the original
worm’s code that was changed to a different string. It is indeed obvious that
script kiddies motivation is fame.

- Crackers: This group of people are known as average attackers who have medium-
level programming skills. Crackers usually use the same tools used by script kid-
dies. However, crackers do know how the code of such tools is written and how
it behaves. Crackers do not have any ethical boundaries and their motivations
behind mounting attacks against systems and networks is money and power.

- White Hat Hackers: This group of people are highly skilled programmers who
use their skills in enhancing the security of software. White hat hackers work in
the computer security field and they are indeed known to be the best developers.

- Black Hat Hackers: The technical skills of black hat hackers are at a level
comparable to that of white hat hackers [1]. However, the focus is different. White
hat hackers are more concerned about the security issues of software development
and algorithms. On the other hand, Black hat hackers are more concerned about
the security of systems.

3 Network Attacks and Countermeasures

It has been long known that those who know how their system can be exploited are far
superior at preventing such attacks than those who do not. Thousands of attacks exists
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these days and the description of every single attack is beyond the scope of this paper.
However, each attack simply starts with a simple set of steps and most of the time with
similar techniques. This section gives a detailed description of the most used attacks,
along with some analysis of such attacks and techniques for better countermeasures. A
number of programs have been used to simulate some of the attacks and the generated
packets were captured using a packet sniffer called tcpdump. The IP addresses in the
captured traces have been modified for illustration purposes.

3.1 Packet Sniffing

Packet sniffing is a passive attack where packets are read from a network stream. A
packet sniffer is a piece of software or hardware that monitors all network traffic. Tools
like tcpdump/windump, Ethereal, and many more are examples of packet sniffer soft-
wares that use raw sockets and the recvfrom system call to read packets from the
network interface. These tools were originally developed to allow network administra-
tors to troubleshoot their network and find bottlenecks, and by Intrusion Detection
Systems to monitor for malicious traffic. Anybody with root privileges on Linux or
administrator privileges on Windows can run a packet sniffer and start capturing pack-
ets. The security threat presented by sniffers is their ability to capture all incoming
and outgoing traffic, including usernames, passwords, and other sensitive information
that travels over the network in the clear.

To demonstrate the threat of such tools, we can look at telnet for instance. Telnet is
a protocol that does not use any encryption schemes and all the data gets transmitted
in the clear between the two communications parties. If user A uses the telnet protocol
to connect to server B, then user C who is running a packet sniffer between A and B
can see the plaintext traffic. C can capture the username and password of A, use it to
break into A’s account on machine B, and attempt to gain access to a higher privileged
account (i.e. root/administrator). User C can be more imaginative and install a sniffer
on the server to compromise more and more accounts or even use the compromised
accounts to mount a more sophisticated attack.

Example:
Here is an example of a sniffer capturing a TCP three-way handshake between machine
A and machine B to start a telnet session:
IP A.33819 > B.telnet: S 2797576379:2797576379(0)
IP B.telnet > A.33819: S 2802411635:2802411635(0) ack 2797576380
IP A.33819 > B.telnet: . ack 1

3.1.1 Countermeasures

Packet sniffing is a passive threat that does not alter the packets that are being trans-
mitted. It is, therefore, quite difficult to know whether a specific system is running
a packet sniffer or not. However, some techniques can be used to determine whether
the NIC (Network Interface Card) on the suspect machine is running in promiscuous
mode or not. The non-trusting assumption is that because it is in promiscuous mode,
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the machine must be running a sniffer. These tests assume that the sniffer detection
tool and the suspect machine are both in the same Ethernet segment:

- DNS test: Create numerous fake TCP connections expecting a poorly written
sniffer to pick up on those connections and resolve the IP addresses of the nonex-
istent hosts. Some packet sniffers perform reverse DNS lookups for the packets it
captures. When reverse DNS lookup occurs, the detection tool sniffs the lookup
request to see if the target is the one requesting resolution of that nonexistent
host [13].

- Ping test: This method relies on a problem in the target machine’s kernel.
One can build an ICMP echo request packet with the IP address of the machine
suspected of hosting a sniffer but with a deliberately mismatched MAC address
[13]. Send the ICMP packet to the target with the correct destination IP address,
but a bogus destination hardware address. Most systems will disregard this packet
since its hardware address information is incorrect. But in some Linux, NetBSD
and NT systems, since the NIC is in promiscuous mode, the sniffer will grab
this packet off the network as a legitimate packet and respond accordingly. If
the target in question replies to our request, we know it is in promiscuous mode.
Clever attackers are of course aware of this and can update their sniffers to filter
out such packets.

The above tests can be used to help detect machines that are running sniffers. To
prevent such threats, the best solution is to use protocols that use strong cryptographic
schemes to encrypt all the incoming and outgoing traffic.

3.2 Ping and Traceroute

Before the attacker attempts to break into a system or a network, some information
about the target needs to be gathered first. Knowing the topology of any network and
which systems are up or down at any given time is considered knowing a lot of sensitive
information. Two programs, traceroute and ping, were initially developed to allow
network administrators to troubleshoot their networks by sending appropriate probes.
Both ping and traceroute make use of the ICMP protocol to accomplish their tasks.
The abuse of such programs in general and the ICMP protocol in particular helped
many attackers to gather sensitive information about their targets and sometimes cause
a denial of service attack as described in the Denial of Service section. A user with root
or administrator privileges can run the traceroute or ping programs, or even construct
ICMP packets and sends such packets to hosts on the Internet.

3.2.1 Ping

The ping program is used to determine whether machine B is up or down at any given
time t. The way it works is as follows (Assume that the ping program is running on
machine A):

1. sets the message type in the ICMP header to an echo request message, the source
address in the IP header to A’s IP address, and the destination address in the IP
header to B’s IP address. The ICMP packet is then sent to B.
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2. If B receives the ICMP echo request message then it will send A an ICMP echo
reply message.

3. If A receives an ICMP echo reply then B is considered to be up at time t. Oth-
erwise, it is considered to be down.

Ping Trace:
- The attacker sends the victim an ICMP echo request:
IP attacker > victim: icmp 64: echo request
- The victim sends the attacker an ICMP echo reply:
IP victim > attacker: icmp 64: echo reply

3.2.2 Traceroute

The traceroute program is used to count how many routers are between machine A and
B. The Unix version of the traceroute program uses two different techniques (ICMP by
itself or with UDP). The Windows version uses only ICMP. The way such programs
work is as follows:

- ICMP:

1. Sets the message type in the ICMP header field to an echo request message,
the source address in the IP header to A’s IP address, the destination address
in the IP header to B’s IP address, and the TTL value in the IP header to
1. The ICMP packet is then sent to B.

2. If a router receives the packet, then the TTL value is decremented by one.
If the router decrements and gets a 0 then the packet is discarded and the
router constructs an ICMP packet A with a time exceeded in transit message.
Otherwise, the packet is forwarded to the next router or to B

3. If the B receives the ICMP echo request message then it will send back an
ICMP echo reply message.

4. If the traceroute program on A gets a time exceeded in transit message then
step 1 is repeated but with a TTL value equal to 2 (Note that the TTL value
keeps incrementing until an echo reply is received).

5. If the traceroute program on A gets an ICMP echo reply from B then the
number of routers between A and B is simply the current value of TTL - 1.

- UDP and ICMP: The same process is repeated as described above but with a
few small differences:

1. The program sends a UDP packet to a random udp port on B instead of an
ICMP packet.

2. A expects to receive an ICMP port unreachable message from B instead of
an echo reply.

3. Similarly to above, the number of routers between A and B is simply the
current value of TTL - 1.

Traceroute ICMP Trace:
- The attacker sends the victim an ICMP echo request:
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IP attacker > victim: icmp 18: echo request
- The victim sends the attacker an ICMP echo reply:
IP victim > attacker: icmp 18: echo reply
Traceroute UDP Trace:
- The attacker sends the victim a UDP packet from udp port 32840 to udp port 33435
:
IP attacker.32840 > victim.33435: UDP, length: 10
- The victim sends the attacker an ICMP udp port unreachable:
IP victim > attacker: icmp 46: victim udp port 33435 unreachable

3.2.3 Countermeasures

The best way to prevent against malicious ICMP probes is to block all ICMP packets.
To prevent against incoming and outgoing ICMP packets from the Internet to a LAN
and vice versa, a firewall protecting the LAN can be configured to block such packets.
To prevent probes from machines to other machines on the same LAN, either a router
can be configured to not send any ICMP packets or a personal firewall can be installed
and configured to block the packets. One should take into consideration that blocking
all ICMP packets is not the optimal solution because such packets are also used for
non-malicious purposes. Consider the following scenario for instance: if machine A
wants to send some data to machine B on some LAN. A sends a huge packet which
exceeds the MTU of B’s LAN. Before the packet enters the LAN, it must pass through
a router and if the router is allowed to send ICMP packets then it will simply discard
the packet and send an ICMP packet with a ”need to frag” message along with the
LAN’s MTU. A receives the ICMP packet and knows that it must split the packet into
fragments and send them to B. What if the router has been silenced and configured
not to send any ICMP packets? If that is the case, then A will never know that the
packet was discarded.

3.3 IP spoofing

IP spoofing is a technique that is used to send packets with a spoofed IP address.
Attackers attempt to use such techniques to hide their identities and make it difficult
for authorities to track the source of an attack. The IP header contains a 32-bit field
for the source IP address and a 32-bit field for the destination IP address. One can
simply construct a packet and fill the source address in the IP header with any IP
address (either valid or invalid). Once the packet is constructed then the attacker can
call the sendto system call to send the packet. For instance, nmap (a port scanner)
which constructs crafted packets can be used to spoof the source of a scan using the
following command (must have root privilege):
nmap -S spoofed-address -e eth0 -sP target-address
The above command will construct an ICMP echo request packet, sets the source
address field in the IP header with the spoofed-address and sends the packet to target-
address. Using the above command in this case is indeed useless because if the target-
address is up then it will send an ICMP echo reply to spoofed-address and the attacker
will never know whether the target is up or down. However, the above command
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illustrates how the source of any packet can be easily spoofed. IP spoofing is mostly
used when attackers mount denial of service or distributed denial of service attacks to
cause such attack to work effectively (refer to the Denial of Service and Distributed
Denial of Service sections for more details).

3.3.1 Countermeasures

If the spoofed address is for instance 127.0.0.1 or one of the IP addresses that are used
for experimental or private purposes then one can detect such spoofing easily. Other-
wise, it is quite difficult to know whether an address is spoofed or not. Consider for
instance the following trace:
- The attacker sends the victim an echo request:
IP spoofed-address > victim: icmp 64: echo request
- The victim sends the attacker an echo reply:
IP victim > spoofed-address: icmp 64: echo reply

If the above trace was captured, then one might think that spoofed-address attempted
to ping victim. is it possible, however, to know whether the source IP address is a real
IP or a spoofed one? The answer to this question is it depends. To be able to know
whether a spoofed address was used or not, one needs to analyze more traces which
shows the given address and its related activities. Even then determining whether the
used IP address is real or spoofed is still not guaranteed.

3.4 Port Scanning

Once the attacker knows that the victim’s machine is up then the second step is to
know what services the system is running. Some system and network administrators
simply ignore port scanning activities against their systems and networks because they
think that no harm can be caused by such activities. One should know, however, that
if someone scanned your network or system then it must have been done with malicious
intents otherwise the scanning activity would not have been done in the first place. If
a thief wants to break into a house, then first the thief will start checking whether the
doors/windows are open or closed, whether somebody is inside the house or nobody
is home, etc. One can think of port scanning as exactly what a clever thief would do
before breaking into a house. Many different scanning techniques exist today, some are
stealthier than others and can bypass firewalls and Intrusion Detection Systems easily.
If strict countermeasures are applied against port scanning activities then attackers
would have to think twice before attempting to scan a system or a network. Many
port scanning tools can be found on the Internet but the most famous port scanner is
called nmap. Nmap requires root or administrator privileges so it can construct crafted
packets and sends them. A list of the most famous and stealthy scans used by nmap
and many other port scanners are described below:
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3.4.1 TCP connect scan

This is the easiest type of scanning techniques since it does not require root or ad-
ministrator privileges. Here is how it works (A refers to the attacker and B refers to
victim’s machine):

1. Construct a TCP stream socket and call the connect system call offered by the
kernel.

2. If the system call return -1 (indication of an error of some sort) then the port is
closed. Otherwise, it is considered open.

TCP connect scan trace:
The attacker attempts a TCP connect scan to an open port 22 (ssh) from port 34401.
The TCP three-way handshake is completed and because of that everything gets logged
on the victim’s system (this is why this type of scan is not considered stealthy).
- The attacker sends a SYN to the victim:
IP attacker.34401 > victim.ssh: S 114661504:114661504(0)
- The victim sends the attacker a SYN/ACK:
IP victim.ssh > attacker.34401: S 102340587:102340587(0) ack 114661505
- The attacker sends the victim an ACK:
IP attacker.34401 > victim.ssh: . ack 1

The attacker attempts a TCP connect scan trace to a closed port 31347 from port
34405. It is obvious that this type of scan can only be stealthy if it is mounted against
a closed port since no full connection takes place.
- The attacker sends the victim a SYN:
IP attacker.34405 > victim.31347: S 949824287:949824287(0)
- The victim sends the attacker a RST/ACK:
IP victim.31347 > attacker.34405: R 0:0(0) ack 949824288

3.4.2 SYN scan

This type of scan is known as half-open scanning because the scanner does not finish
the three-way TCP handshake. Here is how it works (A is the attacker and B is the
victim’s machine):

1. A sends a SYN packet to a specific port on B.

2. If the port is closed then B sends a RST/ACK packet to A, else if the port is
open then B sends a SYN/ACK packet to A.

3. If A receives a RST/ACK packet then A knows that the port is closed, else if A
receives a SYN/ACK packet then A knows that the port is open and sends back
a RST packet to tear down the connection.

SYN scan trace:
The attacker attempts a SYN scan to an open port 22 (ssh) from port 46813 and only
the first two steps of the TCP three-way handshake is completed (nothing is logged on
the victim’s system and this is why this type of scan is considered stealthy).
- The attacker sends the victim a SYN:
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IP attacker.46813 > victim.ssh: S 3098388824:3098388824(0)
- The victim sends the attacker a SYN/ACK:
IP victim.ssh > attacker.46813: S 1752551723:1752551723(0) ack 3098388825
- The attacker sends the victim a RST:
IP attacker.46813 > victim.ssh: R 3098388825:3098388825(0)

The attacker attempts a SYN scan to a closed port 31347 from port 39359
- The attacker sends the victim a SYN:
IP attacker.39359 > victim.31347: S 1717193123:1717193123(0)
- The victim sends the attacker a RST/ACK:
IP victim.31347 > attacker.39359: R 0:0(0) ack 1717193124

3.4.3 FIN scan

Many firewalls block incoming SYN packets to restricted ports and to bypass such
devices and packet filters, an attacker can use a FIN scan. Here is how it works (A is
the attacker and B is the victim’s machine):

1. A sends a FIN packet to a specific port on B.

2. If the port is closed then B sends a RST/ACK packet to A, else if the port is
open then B does not send anything to A

3. If A receives a RST/ACK packet then A knows that the port is closed, else if A
does not receive any response from B and it times out then the port is open.

FIN scan trace:
The attacker attempts a FIN scan to an open port 22 (ssh) from port 54181.
- The attacker sends the victim a FIN:
IP attacker.54181 > victim.ssh: F 0:0(0)
- The attacker does not receive any response and hence the ssh port is considered to
be listening.

The attacker attempts a FIN scan to a closed port 31347 from port 57955.
- The attacker sends the victim a FIN:
IP attacker.57955 > victim.31347: F 0:0(0)
- The victim sends the attacker a RST/ACK:
IP victim.31347 > attacker.57955: R 0:0(0) ack 1

3.4.4 NULL and XMAS tree scans

These type of scans can be used to both determine open/closed ports and fingerprint
the victim’s operating system. In the XMAS tree scan, the attacker sends a packet
to the victim’s machine with the following flags set: URG/PSH/FIN. If the port is
closed then a RST/ACK packet is sent back. Otherwise, the port is considered open.
In a NULL scan, the attacker sends a packet without setting any flag and again if a
RST/ACK packet is sent back then the port is considered closed and otherwise open.
NULL scan trace:
The attacker attempts a NULL scan to an open port 22 (ssh) from port 61705.
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- The attacker sends the victim a packet without setting any flag:
IP attacker.61705 > victim.ssh: .
- The attacker does not receive any response, times out and the ssh port is considered
to be listening.

The attacker attempts a NULL scan to a closed port 31347 from port 57367.
- The attacker sends the victim a packet without setting any flag:
IP attacker.57367 > victim.31347: .
- The victim sends the attacker a RST/ACK:
IP victim.31347 > attacker.57367: R 0:0(0) ack 0

XMAS tree scan trace:
The attacker attempts an XMAS tree scan to an open port 22 (ssh) from port 60836.
- The attacker sends the victim a FIN/PSH/URG:
IP attacker.60836 > victim.ssh: FP 0:0(0) urg 0
- The attacker does not receive any response and hence the ssh port is considered to
be listening.

The attacker attempts an XMAS tree scan to a closed port 31347 from port 58129.
- The attacker sends the victim a FIN/PSH/URG:
IP attacker.58129 > victim.31347: FP 0:0(0) urg 0
- The victim sends the attacker a RST/ACK:
IP victim.31347 > attacker.58129: R 0:0(0) ack 1

3.4.5 Countermeasures

To detect port scanning activities, here are some ideas:

• If the system logs a full TCP connection and no data was exchanged then its
probably a port scan.

• An effective way to detect most of the stealthy scans is to monitor both incoming
and outgoing traffic. If your machine is sending out a RST/ACK packet then it
means that somebody tried to connect to a closed port on your machine. What
will make somebody do that? Sometimes its probably a coincidence but most of
the time it implies that someone is scanning your system.

To protect against port scanning activities coming from the Internet to a LAN, then
a firewall can be configured to filter and only allow packets coming to open ports only
and not any port.

3.5 Denial Of Service

Denial of Service (DoS) is an attack that prevents a system or a network from using its
resources normally. These attacks are known to abuse Internet citizens, to stop network
traffic and commerce to corporate websites, and to suppress the network presence of
hosts that an attacker wants to impersonate. IP spoofing is a common technique that
is used when attackers mount denial of service attacks to hide their identities and/or
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to cause their attacks to succeed. A list of the most common DoS attacks are described
in this section:

3.5.1 SYN flood

This attack exploits the TCP three-way handshake and causes the victim’s machine to
crash. In this attack, the attacker sends a large number of SYN packets to the victim.
The success of this attack depends on the number of packets sent and the speed with
which they are sent. To make the attack work effectively, attackers usually fork many
child processes that can send many packets to the victim at the same time. A SYN
flooder engine works as follows (A refers to the attacker and B refers to the victim’s
machine):

1. A constructs a TCP packet and does the following: sets the SYN flag in the TCP
header, fills the source address in the IP header with a spoofed IP address (the
source IP address must be a machine that is down to get this attack to work),
fills the destination address in the IP header with B’s IP address, and finally fills
the destination port number in the TCP header with a port on B that is listening
and accepting connections.

2. A calls the sendto system call and the packet is sent to B.

3. B receives a SYN packet and since the port on B is accepting connections then B
adds the packet to a queue of half-open connections. B will attempt to finish the
three-way handshake and as a result a SYN/ACK packet is sent to the spoofed
IP address in the packet. Since the spoofed IP address is a machine that is down
(i.e. not connected to the Internet at this time), then no response will be sent
back to B but B will keep waiting for an ACK packet.

4. A repeats the same procedure in step 1 and sends more and more SYN packets
until the queue of half-open connections on B gets filled up (the queue will always
have a fixed size because memory is fixed). Once B’s queue gets filled, then B
will usually crash.

SYN Flood trace
The attackers attempts to flood an open port 22 (ssh) with SYN packets, and uses a
spoofed (unused) IP address. For illustration, only 5 packets have been taken from the
captured session.
IP unused-address 1.34566 > victim.ssh: S 674719801:674719801(0)
IP victim.ssh > unused-address 1.34566: S 2595256625:2595256625(0) ack 674719802
IP unused-address 2.34566 > victim.ssh: S 674719801:674719801(0)
IP victim.ssh > unused-address 2.34566: S 2708979260:2708979260(0) ack 674719802
IP unused-address 3.34566 > victim.ssh: S 674719801:674719801(0)
IP victim.ssh > unused-address 3.34566: S 2617688745:2617688745(0) ack 674719802
IP unused-address 4.34566 > victim.ssh: S 674719801:674719801(0)
IP victim.ssh > unused-address 4.34566: S 2629081320:2629081320(0) ack 674719802
IP unused-address 5.34566 > victim.ssh: S 674719801:674719801(0)
IP victim.ssh > unused-address 5.34566: S 2631113410:2631113410(0) ack 674719802
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3.5.2 Ping of Death

The ICMP protocol is used to mount this attack. Some software allows the attacker
to send ICMP packets that are larger than 65,536 bytes which is the maximum that
the TCP/IP specification allows [7]. Since the packet is large, then it gets fragmented
to smaller packets and sent to the victim’s machine. Once the victim receives all the
fragments and reassembles them to their illegal size, the buffer that stores the complete
packet overflows and causes the system to crash.

3.5.3 Countermeasures

Prevention techniques are described below:

- SYN Flood: A very simple way to prevent against this attack can be done by
adding appropriate checks to the queue of half-open connections. If the queue is
about to get filled up then abort all the connections and flush the queue.

- Ping of Death: Keep track of the current fragment size and next fragment size
and if adding the next fragment size exceeds 65,536 bytes then discard the packet.

3.6 Distributed Denial of Service

Distributed Denial of Service (DDoS) attacks are a more sophisticated way to flood
machines and exhaust their resources. It is based on the same idea of DoS but with
a small variation in mounting the attack which can make it more effective in hitting
the target and forcing it to reboot. DDoS are of big concern to system administrators
and security analysts because the attacks are done from compromised hosts on the
Internet and tracking down the original source of the attack is extremely difficult. Two
terms: zombie, and handler are used when one talks about DDoS. These two terms are
described below:

- Zombie: A Zombie refers to a compromised host on the Internet. A host can
be compromised using one or more of the following techniques: sniffing plaintext
username and passwords, sniffing encrypted username and passwords and cracking
the encryption scheme, obtaining a copy of the password file and cracking the
encrypted passwords, social engineering, exploiting a software bug on the host
machine, etc. If the attacker can break into a host, then the attacker can install
a backdoor to access the system again (i.e. breaking into a system and adding a
new user account, installing a Trojan horse, etc).

- Handler: A handler refers to a program that communicates with another pro-
gram installed on a Zombie to cause it to execute specific commands according
to what the master wants (the attacker).

A generic scenario to mount a DDoS can be achieved as follows (A refers to the attacker
and B refers to the victim’s machine):

1. A writes a program called syn-attack with a SYN flooder engine that can send
SYN packets to B with a spoofed and unused source IP address. A adds some
code to cause the syn-attack program to listen to tcp port 41414 once executed
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and to wait for an incoming string “Attack Target”. If the malicious program
receives the string then it will start executing the SYN flooder’s code. A injects
the syn-attack’s code into an executable file of a program that is used very often
by many users call it org-program. A can simply append the malicious code to the
end of the executable file and modify the structure of the file to allow the code
to get loaded into memory along with the original program and starts executing
before the original program. Once the malicious code gets executed and becomes
memory resident then it simply passes the control back to the original program.

2. A breaks into a number of hosts on the Internet and replaces the org-program on
the compromised host with the modified version which is the same program but
contains an embedded malicious code.

3. A writes the handler’s code which once executed attempts to connect to the IP
addresses of the compromised hosts on port 41414 and sends the string “Attack
Target”.

4. Users on the compromised hosts execute org-program and the malicious code
starts listening on tcp port 41414.

5. A executes the handler’s code and the string is sent to the zombies.

6. Ports 41414 on the compromised hosts receive the string and start sending a large
number of SYN packets to B and B gets flooded.

The above scenario is a generic simple way to mount a DDoS attack. Many different
techniques can be added by attackers to allow a more sophisticated and successful
attack.

3.6.1 Countermeasures

DDoS attacks rely on the zombies to mount the attack. If users use strong password
and keep their operating system and software up to date then it will be difficult for
attackers to break into their systems. If the hosts are compromised then one can use
some of the techniques described in the DoS countermeasure section.

3.7 Buffer Overflow

Any program uses a buffer at one point or another. A program which uses a fixed size
buffer and does not check the buffer’s boundry then the program is vulnerable to a
buffer overflow attack. Many libc functions in C/C++ do not check buffer boundaries
(i.e. strcpy, gets, strcat, etc) and by using such functions in any program, attackers can
execute arbitrary code and change the flow of the vulnerable program. Buffer overflow
bugs are the most significant practical security threat of the decade and many worms
exploit such bugs to gain root or administrator privilege on the victim’s machine. There
are many different types of buffer overflow attacks: stack smashing, heap smashing,
return-into-libc, etc. For illustration, the simplest form of such attacks which is known
as stack smashing will be described in this section.

- Whenever a function is called then the arguments of the function are pushed onto
the stack, then the return address of where the function is called (An absolute
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memory address) which is 4 bytes, and finally the saved frame pointer which is
used to access the local variables of the function which is 4 bytes.

- Lets assume that a buffer called buf is declared inside a function and has a fixed
size say 1024 bytes. For simplicity, we will assume that all that the function does
is to read from standard input and echo the input back to standard output once
its done reading (i.e. if a user hits enter then function knows its done reading).

- If a user executes this program and enters data less than the buffer’s fixed size
then nothing will happen and the program will execute normally. However, If
a user enters more than the fixed size value plus 5 bytes to overwrite the saved
frame pointer and the first byte of the return address then a segmentation fault
will occur.

The hardest part in buffer overflow attacks is to know the buffer’s address on the
stack. To get an approximation of the size of the buffer, one can keep inputting data
to the vulnerable program and count the number of bytes used until a segmentation
fault occurs. If the attacker is able to get the stack pointer address once the function
is called then the attacker can subtract the approximate size from the stack pointer
and gets an approximations of the buffer’s address. Debugging techniques can be used
to find out the stack pointer address if the executable of the vulnerable program is
available. To be able to exploit the bug in the above program, an attacker can do the
following:

- Write the payload in assembly or simply use C and then convert it to assembly
code with the -S flag.

- Optimize the assembly code and get rid of any end of string characters which is
used by many libc functions to indicate the end of the string. For instance if an
assembly instruction sets a register to 0, then an optimization would be to xor
the contents of the register with itself.

- Convert the assembly instructions to its hexadecimal representation using a de-
bugger. If the hexadecimal exploit string is less than 1024 which is the size of
the buffer in the above program then one can simply add nop instructions to the
exploit string. Say the payload string is 500 bytes then a candidate string to
smash the stack and run the payload can be crafted as follows:
528 bytes (nop instructions) + 500 bytes (exploit string) + 4 bytes (starting ad-
dress of the buffer on the stack)
The above crafted exploit will overflow the buffer and overwrites the return ad-
dress with the buffer’s address. Once the code of the function is done executing,
then the buffer address will be fetched and the program counter will point to it
and start executing the nop instructions followed by the exploit code.

3.7.1 Countermeasures

Some techniques like monitoring the return address on the stack, making the stack non-
executable, etc have been developed to help protect against buffer overflow. However,
an effective countermeasure for this type of attack has not been implemented. Keeping
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your operating system and software up to date can sometimes help. The best solution,
however, would be to write secure code in the first place by checking buffers size limits.

3.8 Trojan horses

A Trojan horse is a malicious program which is embedded inside an innocent program
(i.e. a game). Such programs are based on a client/server model where the server
program gets installed on the victim’s machine and the attacker uses the client program
to send commands to the server, hence giving the attacker complete control over the
victim’s machine. A generic way to build a simple Trojan horse that can for instance
copy random or specific files from the victim’s machine and send it to the attacker is
as follows (A is the attacker and B is the victim’s machine):

1. A writes the server code of the Trojan horse that once executed does the following:
creates a socket and binds it to tcp port 56565, listens for incoming connections
to that port and waits for a specific string “Get file” where file refers to the file
name that is to be copied. Once the server receives such string then it starts
traversing the file system searching for the file. Once the file is found then the
server’s code starts copying and sending the bytes of the file to the client program
running on the A’s machine. A can inject the server’s code into an executable file
of for instance a game and fool the victim to execute it. A will have to modify
the structure of the game’s executable file to get the malicious code to run first
and then the game.

2. A writes the client code of the Trojan horse which once executed does the fol-
lowing: creates a socket, connects to the IP address of B port 56565, sends the
string ”Get file” and waits for the copy of the file.

3. A sends the game to the victim.

4. The victim executes the game without knowing that it is embedded with malicious
code. The server’s code starts running and goes memory resident and then the
game’s code starts to execute.

5. A runs the client code and gets a copy of whatever file A wants

Many different techniques can be added and used by Trojan horses to allow the at-
tacker to send more sophisticated commands remotely and by using better features for
instance to know when the victim is up, and so on.

3.8.1 Countermeasures

Do not download and execute code from untrusted websites. Keeping your anti-virus
software up to date can help detect known Trojans. However, anti-virus software will
not be able to detect Trojans whose code can be found in the wild (the Internet).

3.9 Viruses and Worms

Viruses and Worms are by far the most dangerous types of Malware. Such malicious
code can exhaust resources, invade privacy, and cause millions of dollars in losses.
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What makes viruses and worms a unique piece of code is their ability to replicate.
Worms are independent programs that can be executed on the CPU like any other
program. However, viruses need a host program and they only can execute once the
host program is executed. Any malicious program can be written in such a way that
it behaves like a Trojan, a virus, a worm, or a combination of the three. Worms are
more network related and once they are released, a lot of bandwidth gets consumed
due to the heavy traffic caused by their propagation phase. To fully understand how a
worm propagates, some assumptions need to be made first:

- Assume that on a given network, half of hosts are running a service called example
which listens to tcp port 4444 and has a buffer overflow bug that allows a remote
attacker to execute arbitrary code.

- Assume that an attacker writes a worm which exploits the example service and
which uses a hit list scanning technique where the list of IP addresses of the
vulnerable machines running the example service is included within the worm’s
code (To determine the vulnerable machines, the attacker can simply use port
scanning techniques).

The attacker releases the worm by for instance sending it to machine E. To demonstrate
the worm’s attack, here is a simple scenario:

1. A user on machine E executes the worm’s code without knowing what it does.

2. The worm’s code (the parent) is now running on E’s CPU. The worm opens a tcp
port 23456 on E, forks a child process to wait for incoming connections on that
port and to start sending a copy of worm’s code to any machine that attempts
to connect. The parent process continues executing on E’s machine and selects a
random IP address from the list that was added in its code by the attacker. Lets
say the selected IP address is machine F’s IP address.

3. F is one of the vulnerable machines that are running the example service. There-
fore, once the parent worm selects F’s IP address then it attempts to connect to
tcp port 4444, patch the exploit code on the fly with E’s IP address, and sends
the exploit to the example service running on F.

4. The example service on F overflows and the exploit code gets executed and does
the following: connects to E’s IP address on tcp port 23456 and starts copying
the worm’s code from E to F and executes it.

5. Go to step 2 but with machine F instead of E.

3.9.1 Countermeasures

Effective countermeasure against worms is still not yet found. However, keeping your
operating system, softwares and anti-virus software up to date will help protect your
system to some extent.
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4 Experiments

Snort, an intrusion detection system, was used along with IDPP (a system that was
implemented to accelarate the detection and analysis of attacks) to analyze intrusion
attempts in real data sets captured at the University of Calgary. Snort is a lightweight
network intrusion detection system, capable of performing real-time traffic analysis
and packet logging on IP networks. It can perform protocol analysis, content search-
ing/matching and can be used to detect a variety of attacks and probes, such as buffer
overflows, stealth port scans, CGI attacks, SMB probes, OS fingerprinting attempts,
and much more. Snort uses a flexible rules language to describe traffic that it should
collect or pass, as well as a detection engine that utilizes a modular plugin architecture.
Snort has a real-time alerting capability as well, incorporating alerting mechanisms for
syslog, a user specified file, a UNIX socket, or WinPopup messages to Windows clients
using Samba’s smbclient [9]. For this project, Snort was installed and configured to
process trace files captured at the University of Calgary and detect intrusion attempts.

IDPP which stands for Intrusion Detection Post-Processing was implemented in
Java. The system reads the alert file generated by Snort, parses it and dumps the
new collected data to a MySQL database. The system has a Graphical User Interface
to make the visualization of attack more effective, and uses a MySQL database to
effectively allow the user to browse and query a huge amount of data in a reasonable
time. The main focus of the implementation was to provide a more readable format
of the intrusion attempts, to get some statistics about the intrusions, and to provide
better ways to quickly search for specific attacks. The system contains four main
classes:

- Parser: This class is used to perform the parsing routines.

- GUI: This class is used to build the Graphical User Interface and perform the
interaction routines.

- Database: This class is used to perform the database routines.

- Mail: This class is used to send mail using SMTP (Simple Mail Transfer Proto-
col).

- Load file: This option allows the user to load an alert file generated by Snort.
Once the file is selected, it gets parsed by the parser, and gets loaded to both a
MySQL database table and to the Graphical User Interface.

- Get file statistics: This option allows the user to get some statistics about the
alert file. This includes the total number of packets, the number of TCP packets,
the number of UDP packets, and the number of ICMP packets.

- Get attack statistics: This option allows the user to get some statistics about
the attacks in the alert file. It displays uniquely the attacks found in the file and
how many times each of them occured.

- Get U of C attack statistics: This option allows the user to get statistics
about how many attacks in total were mounted from the University of Calgary’s
network to other networks and vice versa.
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- Get all attack statistics: This option allows the user to get statistics about
how many attacks were mounted from the University of Calgary’s network to
other networks for all the attacks found in the alert files and vice versa.

- Search: The search option gives the user a sophisticated way to browse the
attacks and find specific ones. The user can search by any criteria (e.g. source
IP addresses, types of attacks, priority, etc).

- Display header: This option enables the user to display the header of a selected
packet.

- Send mail: This option uses sockets and the SMTP to allow the user to send
mail. This option allows the user to alert other users about specific attacks.
The mail server (imgw.cpsc.ucalgary.ca) was used for testing purposes and can
be changed easily to suit the need of the user’s network.

- Add attack to mail: This option allows the user to select an alert and attach
it to a message.

- Save a record: This option allows the user to save the list of alerts to a database.

- Load a record: This option allows the user to load an old saved record from
the database to the Graphical User Interface.

- Delete a record: This option allows the user to delete an old saved record from
the database.

Using Snort and IDPP together provided an effective way to process largs trace files
and made one capable of finding interesting malicious attacks. There are a few screen
shots in the next page of IDPP and what follows is a detailed description about the
results and some analysis.
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Figure 1: Search Figure 2: Initial load

Figure 3: Headers display Figure 4: Send mail

5 Results

Trace file captured at the University of Calgary on March 07 2005

Trace # of Packets Alerts
March 07-2005-21-01-01 6,135,347 7,048

Attack Total From U of C To U of C Other
BACKDOOR typot Trojan traffic 166 0 166 0

SCAN FIN 822 657 165 0
MISC source port 53 to < 1024 2 0 2 0

TCP Distributed Portscan 78 0 78 0
TCP Decoy Portscan 89 0 89 0

TCP Portscan 383 149 232 2
TCP Portsweep 4,550 4,400 128 22

POLICY poll.gotomypc.com access 951 0 951 0
BAD-TRAFFIC tcp port 0 traffic 7 3 4 0

Total 7,048 5,209 1,815 24
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Trace file captured at the University of Calgary on March 03 2005

Trace # of Packets Alerts
March 03-2005-07-01-00 2,997,633 3,410

Attack Total From U of C To U of C Other
BACKDOOR typot Trojan traffic 162 0 162 0

SCAN FIN 69 2 67 0
TCP Distributed Portscan 10 0 10 0

TCP Decoy Portscan 104 0 104 0
TCP Portscan 317 55 261 1
TCP Portsweep 1,761 1,688 22 51

POLICY poll.gotomypc.com access 954 0 954 0
BAD-TRAFFIC tcp port 0 traffic 33 0 33 0

Total 3,410 1,745 1,613 52

Trace file captured at the University of Calgary on March 03 2005

Trace # of Packets Alerts
March 03 2005-10-01-00 5,956,831 5,646

Attack Total From U of C To U of C Other
BACKDOOR typot trojan traffic 153 0 153 0

SCAN FIN 1181 1052 129 0
TCP Distributed Portscan 32 0 32 0

TCP Decoy Portscan 104 0 104 0
TCP Portscan 485 147 337 1
TCP Portsweep 2,736 2,661 43 32

POLICY poll.gotomypc.com access 948 0 948 0
BAD-TRAFFIC tcp port 0 traffic 1 0 1 0

SNMP request tcp 3 0 3 0
SNMP trap tcp 3 0 3 0

Total 5,646 3,860 1,753 33
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Trace file captured at the University of Calgary on March 06 2005

Trace # of Packets Alerts
March 06 2005-01-01-00 5,115,692 4415

Attack Total From U of C To U of C Other
BACKDOOR typot trojan traffic 81 0 81 0
DDoS mstream client to handler 1 1 0 0

SCAN FIN 201 104 97 0
TCP Distributed Portscan 36 0 36 0

TCP Decoy Portscan 155 0 155 0
TCP Portscan 238 94 144 0
SNMP trap tcp 5 0 5 0

SNMP request tcp 3 0 3 0
POLICY poll.gotomypc.com access 953 0 953 0
BAD-TRAFFIC tcp port 0 traffic 11 0 11 0

TCP Portsweep 2,731 2,643 49 39
Total 4,415 2,842 1,534 39

Trace file captured at the University of Calgary on March 03 2005

Trace # of Packets Alerts
March 03 2005-22-01-01 5,269,892 6,156

Attack Total From U of C To U of C Other
BACKDOOR typot trojan traffic 229 0 229 0
DDoS mstream client to handler 18 18 0 0

SCAN FIN 1,013 817 196 0
TCP Distributed Portscan 36 0 36 0

TCP Decoy Portscan 59 0 59 0
TCP Portscan 293 140 147 6
TCP Portsweep 3,534 3,431 86 17

SNMP AgentX/tcp request 4 0 4 0
SNMP request tcp 1 0 1 0

POLICY poll.gotomypc.com access 950 0 950 0
BAD-TRAFFIC tcp port 0 traffic 19 1 18 0

Total 6,156 4,407 1,726 23
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Trace file captured at the University of Calgary on March 07 2005

Trace # of Packets Alerts
March 07 2005-06-01-00 3,256,779 4150

Attack Total From U of C To U of C Other
BACKDOOR typot trojan traffic 86 0 86 0
DDoS mstream client to handler 6 0 6 0

SCAN FIN 697 582 115 0
TCP Distributed Portscan 33 0 33 0

TCP Decoy Portscan 69 0 69 0
TCP Portscan 173 89 69 15
TCP Portsweep 2,132 2,040 33 59

POLICY poll.gotomypc.com access 951 0 951 0
BAD-TRAFFIC tcp port 0 traffic 3 0 3 0

Total 4,150 2,711 1,365 74

Trace file captured at the University of Calgary on January 11 2005

Trace # of Packets Alerts
January 11 2005 1,000,000 6,327
Attack Total From U of C To U of C Other

SHELLCODE x86 setuid 0 1 0 1 0
BACKDOOR typot trojan traffic 153 0 152 1
DDoS mstream client to handler 2 2 0 0

SCAN FIN 1662 1507 155 0
TCP Distributed Portscan 91 0 91 0

TCP Decoy Portscan 129 0 129 0
TCP Portscan 265 169 96 0

UDP Portsweep 8 8 0 0
TCP Portsweep 3032 2970 21 41

ICMP PING 4 0 4 0
ICMP Large ICMP Packet 1 0 1 0

ICMP PING NMAP 1 0 1 0
POLICY poll.gotomypc.com access 949 0 949 0
BAD-TRAFFIC tcp port 0 traffic 29 11 18 0

Total 6,327 4,667 1,618 42

6 Analysis

6.1 Buffer overflow

6.1.1 x86 setuid 0

This is a serious attack which might give the attacker the ability to compromise the
target host or open a backdoor for future access. Buffer overflow was described in
detail in previous sections. In this senario, the attacker’s payload was a setuid code. A
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setuid program is one that, if executed, will operate with the permissions of the owner
of the program, not of the person executing the program. The target host must have
been running a network service whose owner is root and which had a buffer overflow
bug. If the attacker delivered the crafted shellcode carefully then the attacker must
have got the malicious code to run with root privileges. In other words, the attacker
was able to do whatever a root user can do on the target host.

6.2 Trojan horses and backdoors

6.2.1 Typot trojan traffic

Typot is a trojan horse that uses a stealth scanning technique to scan and receive
network mapping data. The trojan uses the libpcap and libnet libraries to spoof and
capture network traffic. It was designed to infect systems running Linux. Typot
begins network mapping by sending a TCP SYN packet every second with a fixed
TCP window size of 55808, spoofed source IP and MAC addresses, and a random
destination IP address. Typot causes each infected system to enter promiscuous mode
and watch for TCP SYN packets that have a window size of 55808. If such packets
are captured, then the trojan creates a filename called “r” in the current directory.
After 24 hours, the trojan checks whether the file “r” has been created or not. If it
was created then the trojan connects to IP address (hardcoded inside the trojan code)
via ssh. Once the connection succeeds then Typot simply sends the network mapping
data to the hardcoded IP address.

From the results section, Typot’s traffic was detected and it seems that a number
of hosts on the University’s network are being hit by the trojan’s traffic.

6.3 Policy

6.3.1 poll.gotomypc.com

The website www.gotomypc.com offers a service to access and control any machine
remotely from any Internet connection. The service uses the Hyper Text Transfer
Protocol (HTTP) and has the potential to open huge security holes in any network.
The main goal as claimed by the GoToMyPC company is to offer the user a fast and
an easy way to access his machine remotely. When a user subscribes, a password
is given to the user to secure the access to user’s own machine from any Internet
connection. The main problem is that the passwords are stored on the company’s
servers and if the servers are compromised then one can imagine how easy it would
be to access the users machines remotely. Furthermore, if one wants to access his own
machine remotely then it is totally insecure to involve a second party. From the results
section, all the gotomypc traffic was coming to the University’s network. Either some
of the University’s network users are accessing their own machine on the University’s
network via the gotomypc service and from other networks or malicious users are using
this service to access machines on the University’s network. The second possibility
is extremely dangerous and can open up a lot of security holes. The best solution is
to configure the University’s firewalls (the ones that separate the University’s network
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from the Internet zone) so that it blocks all traffic coming from the www.gotomypc.com
servers.

6.4 Bad traffic

6.4.1 tcp port 0 traffic

The source ports were set to 0 (an invalid port number) and the destination ports
were random ports > 1024. Hence one can conclude that some crafted packets were
constructed for scanning purposes. Filtering packets that have their source ports set
to 0 can fix the problem.

6.4.2 source port 53 to < 1024

The source ports were set to 53 (DNS) and the destination ports were random ports <
1024. Ports < 1024 are reserved ports and normally no packet will have a source port
that is less than 1024. Again one can conclude that crafted packets were constructed for
scanning purposes. Filtering any packet with source port < 1024 can fix the problem.

6.5 Denial of Service and Distributed Denial of Service

6.5.1 Large ICMP Packet

This is a Ping of Death attack which was described in detail in previous sections.
The attacker attempted to cause the target host to crash by sending it a huge crafted
ICMP packet (> 65535 bytes). Many operating systems these days have added patches
to do more checking and can drop these huge packets automatically when detected.
Hence the best solution is to keep operating systems up to date by installing the latest
patches.

6.5.2 mstream client to handler

This is another serious attack which can bring networks down by flooding target ma-
chines with large amounts of traffic. Mstream is a Distributed Denial of Service tool
which poses the same dangers as earlier DDoS tools (e.g. Tribe Flood, Trin00, etc).
Mstream source code consists of 3 files: master.c (the handler’s code), server.c (the
zombie’s code)and stream.c (the payload). The server.c once compiled and executed
will cause the machine to become a zombie. The attacker can then compile and ex-
ecute the master.c file and control the zombies using telnet. The attacker can direct
the zombies to execute the payload in stream file and send TCP ACK packets to the
victim hosts using random ports.

From the results section, one can see that all the traffic of mstream is coming from
the University’s network and which implies that some of the hosts on the network are
infected, that is to say, some of the University’s hosts executed the server file and
became zombies. Mstream’s attack slows a machine down by using up CPU cycles.
The attack also consumes network bandwidth. In addition to the incoming ACK pack-
ets, the target host will consume bandwidth when it tries to send TCP RST packets
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to non-existent IP addresses (refer to IP spoofing and DDoS attacks in previous sec-
tions for more elaboration). Routers will then return ICMP host/network unreachable
packets to the victim, resulting in more bandwidth usage. The distributed method of
attack multiplies the effect on the CPU, as well as consuming large amounts of network
bandwidth [7].

6.6 Ping and Port Scans

Both Ping and Port Scanning were described in detail in previous sections. In general,
network probing tools are used by system and network administrators. They are very
useful in troubleshooting networks and enhancing the security countermeasures.

6.6.1 ICMP PING NMAP and ICMP PING

One can observe that the softwares used to send these packets are nmap and ping.
By default, nmap tries to ping the host before scanning it. This can be disabled by
using the -P0 flag. Furthermore, nmap can be used to ping a host without using it by
using the -sP flag. If there are sensitive information on some of the machines on your
network then the best solution to prevent such probes is to use a firewall and block all
incoming and outgoing ICMP traffic.

6.6.2 SCAN FIN and other port scans

The FIN Scan is one of the stealthy scans that was described in previous sections. Nmap
might have been used to send the probes. The best solution to prevent such probes is
to use a firewall and block incoming FIN packets to ports that are not listening.

7 Future work and improvements

Most current approaches to detect intrusions utilize some form of rule-based analysis
to identify indications of known attacks (e.g. Snort, Bro). Rule-based analysis relies on
sets of predefined rules that are provided by an administrator, automatically created
by the system, or both. Rule-based detection, however, fail to identify attacks which
vary from expected patterns. A minor variations in an attack sequence can affect the
activity-rule comparison to a degree great enough to prevent detection. Furthermore,
rule-based detection cannot effectively detect attack scenarios that may occur over an
extended period of time. In the last few years, an increasing amount of research was
done to improve such techniques. A discussion of improvements are described below:

7.1 Honeypots

A honeypot is a system that is designed to make attackers think that its a real system
to break into [9]. Examples can be: setting a machine whose only purpose is to log
all access attempts, or a machine with unpatched operating system and softwares and
which can be exploited. Honeypots have both advantages and disadvantages. Intrusion
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detection systems sometimes have problems distinguishing hostile traffic from benign
traffic. However, isolated honeypots have a much easier time because these are systems
that should not normally be accessed which implies that all traffic to a honeypot system
is already suspect. One of the main disadvantages of using honeypots is that if the
honeypot is compromised then it might be used to further compromise the network.
Furthermore, honeypots add complexity and in security, complexity is bad because it
leads to increased exposure to exploits.

7.2 Neural Networks

An artificial neural network consists of a collection of processing elements that are
highly interconnected and transform a set of inputs to a set of desired outputs. The
result of transformation is determined by the characteristic of the elements and the
weights associated with the interconnections among them [3]. By modifying the con-
nections between the nodes the network is able to adapt to the desired outputs. The
use of artificial neural networks provides the potential to identify and classify network
activity based on limited, incomplete, and nonlinear data sources which can reasolve
a number of the problems encountered by the other current approaches to intrusion
detection.

The main disadvantage of using such approach is that the ability of the artificial
neural network to identify intrusions is completely dependent on the accurate training
of the system, the training data and the training methods that are used [2]. The
training routine requires a very large amount of data to ensure that the results are
statistically accurate. Obtaining a large quantity of data is always a difficult task.
Furthermore, the connections weights and transfer functions of various network nodes
are usually frozen after the network has achieved an acceptable level of success in the
identifications of events. While the network analysis is achieving a sufficient probability
of success, the basis for this level of accuracy is not often known due to the black-box
nature of the neural network.

8 Conclusion

This paper described in detail the most common attacks used these days to paralyze
network resources, and provided traces and strategies for better countermeasure tech-
niques. Data sets captured at the University of Calgary were analyzed using an open
source Intrusion Detection System (Snort), and an Intrusion Detection Post-Processor
system (IDPP) that was implemented to make the detection and analysis of attacks
more effective.

The analysis of the data sets clearly showed how vulnerable a network can be.
The collected results showed a number of malicious packets traversing the University’s
network freely. One packet carrying a buffer overflow shellcode (exploit string) is
enough to give any attacker root privileges on the target host. Once the attacker gains
root privileges then compromising other hosts is only a matter of time.

Using a well configured Intrusion Detection System provides certain peace of mind.
However, it cannot be a replacement for a well managed firewall, regular security
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audit, and a strong security policy. The work provided in this paper offers serveral
directions for future work and provides a starting point for further investigation into
the burgeoning field of Computer and Network Security.
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