
Secure Email with Fingerprint Recognition

Ahmed Obied

Department of Computer Science
University of Calgary

obieda@cpsc.ucalgary.ca

http://www.cpsc.ucalgary.ca/~obieda

Abstract. Public key cryptographic techniques have been used to pro-
tect email messages via encryption and digital signatures for more than
26 years. Such techniques, however, failed to adopt secure email mes-
saging due to a combination of technical, social, and usability issues. We
present a new approach to email security that uses fingerprint recognition
and cryptographic hash functions to secure access to email accounts and
messages, and to sign and verify email messages. Our approach does not
require doing expensive computations to verify a user’s signature as op-
posed to public key cryptographically protected email. We keep the amount
of user interaction required to the minimum, and provide email users
with security features that include state-of-the-art biometric authentica-
tion schemes.

Key words: Biometrics, Email, Privacy, Security, Authentication, Fin-
gerprint recognition, Signatures, Cryptography, Hash Functions, Public
key Cryptography, Spam

Table of Contents

Secure Email with Fingerprint Recognition . 1
Ahmed Obied

1 Introduction . 3
2 Previous work . 4

2.1 Existing Standards and Technologies . 5
PEM (Privacy Enhanced Mail): . 5
S/MIME (Secure Multipurpose Internet Mail Extensions): 6
PGP (Pretty Good Privacy): . 6

2.2 Current Research . 7
3 Approach . 11

3.1 Components . 11
Environment: . 11
Mail servers and accounts: . 11
Database: . 12
Fingerprints: . 12

3.2 Design and Implementation . 12
Enroller: . 12
Login: . 13
Inbox: . 13
Sending email messages: . 13
Verifying email message: . 14

3.3 Testing . 14
4 Benefits . 14

4.1 Secure email access . 15
4.2 Prevent email spoofing . 15
4.3 Prevent against man-in-the-middle attacks . 16

5 Future Work . 17
6 Conclusion . 17

List of Figures

1 Spoofed email address . 4
2 Email messages are vulnerable to interception at many points 7
3 Enigma system configuration . 10
4 SEFR’s high-level design . 15

Secure Email with Fingerprint Recognition 3

1 Introduction

Email changed the way we communicate in today’s highly technical world. Its
usage increased tremendously in the last few years and millions of users world
wide joined this technological revolution that made the world look so small and
at our disposal. The widespread use of email caused the number of warnings
being made about the dark side our technological revolution to increase and we
are becoming uniquely vulnerable to many mysterious and malicious threats.
Viruses, worms, and other forms of malicious software started targeting our
email inboxes to propagate. Spam and other forms of unsolicited bulk electronic
commerce started filling our email inboxes and invading our privacy. Phishing
and other forms of fraud attacks have been using email as their primary com-
munication channel to trick users into giving out their credentials. Email could
have been a killer application for the Internet if none of the problems mentioned
above exist.

Email messages move across the Internet from mail clients to mail servers,
from mail servers to other mail servers, and from mail servers to mail clients in
the clear. Messages can be intercepted and read by unauthorized or unintended
individuals. Furthermore, email messages can be automatically scanned for key-
words of interest to an eavesdropper. It has been widely reported that national
intelligence agencies are already performing such searches on a large scale [6].
Email can also be surreptitiously modified–even forged (figure 1)–creating the
impression that a person made a statement that he did not [8]. The use of secure
communication channels can protect email messages indeed. However, deploying
such secure channels is not possible in a large-scale environment with distributed
management. As a result, the only way to protect Email is via the use of cryp-
tography. Yet even though cryptographic technology is now built into the email
program being used by most Internet users, few messages that travel over the
Internet are actually secured [9].

Cryptographically protected email technologies such as PGP (Pretty Good
Privacy), PEM (Privacy Enhanced Mail), S/MIME (Secure Multipurpose In-
ternet Mail Extensions) have been proposed and developed to assure integrity,
privacy or establish authorship of email messages. Encryption algorithms pro-
vide two primary functions for email. Signing attaches to the email a digital
signature which can be used to verify the authenticity of the sender and to de-
tect message tampering. Sealing scrambles the content of a message so that it
cannot be deciphered by anyone other than the indented recipient [7]. Crypto-
graphically protected email technologies have the potential to solve the problems
with today’s Internet mail. However, such technologies have a justly deserved
reputation of being difficult to use [8]. PGP, PEM, and S/MIME use public-key
cryptography which is a form of cryptography that generally allows users to
communicate securely without having prior access to a shared secret key. This is
done by using a pair of cryptographic keys, designated as public key and private
key, which are related mathematically [3]. Maintaining keys, and ensuring the
security of the public and private keys of users is a difficult problem indeed. The
security of a public-key cryptosystem depends upon the security of the public

4 Secure Email with Fingerprint Recognition

and private keys of users. The security of public-key cryptosystems can be bro-
ken if the private key of a user gets compromised by an adversary or if the public
key of a user is altered.

To solve the problems with cryptographically protected email technology
and make email security more appealing to users we can simply use biometrics.
Humans have used body characteristics such as face, voice, and gait for thousands
of years to recognize each other [10] but only recently humans started developing
and deploying biometric based systems to authenticate individuals. Biometrics is
the science of establishing or determining an identity [10] based on the physical
or behavioral traits of an individual such as fingerprints, iris, face, palmprint,
hand vein, voice, keystroke, retina, facial thermogram, etc. Biometric systems
are essentially pattern recognition systems that read as input biometric data,
extract a feature set from such data, and finally compare it with a template set
stored in a database. If the extracted feature set from the given input is close to
a template set stored in the database then the user is granted access.

In this paper, we present an approach that uses fingerprint recognition to
secure access to email accounts and messages, and uses cryptographic hash func-
tions to sign and verify users’ messages.

Fig. 1. Spoofed email address

2 Previous work

In the past 26 years, numerous efforts have been made to make secure email
possible, if not ubiquitous. In this section we provide an in-depth discussion of

Secure Email with Fingerprint Recognition 5

the standards, technologies, and algorithms that were proposed and developed.
We also provide a discussion on current research related to email security.

2.1 Existing Standards and Technologies

PEM (Privacy Enhanced Mail): In mid-1980, the Internet Activities Board’s
Privacy Task forced started to develop standards designed to provide end-to-
end encryption for email [8]. These standards became known as PEM and they
defined a way to provide encryption and signature for ASCII email messages
based public-key cryptography using the RSA (Rivest Shamir and Adelman)
algorithm. Using PEM, if Alice wants to send an encrypted message M to Bob
then Alice will have to do the following:

1. Encrypt M using Bob’s public key Kpublic
b which must be published in digital

certificates as defined by the X.509 CCITT standard. After encrypting M ,
C = Kpublic

b (M) is obtained.
2. Send C to Bob.

When Bob receives C, Bob will have to do the following:

1. Decrypt C using his private key Kprivate
b which must be stored on his com-

puter. After decrypting C, M = Kprivate
b (Kpublic

b (M)) is obtained.

Since Bob is the only one who has access to his private key then he is the only one
who can decrypt the message. If Alice wants to send a digitally signed message
M to Bob, then Alice will have to do the following:

1. Encrypt M with her private key to obtain S = Kprivate
a (M).

2. Send M and S to Bob.

When Bob receives M and S, then Bob will have to do the following:

1. Decrypt S using Alice’s public key Kprivate
a . After decrypting S, M =

Kpublic
a (Kprivate

a (M)) is obtained.
2. Check if the decrypted M is equal to M that was sent.

If the decrypted message is equal to the message sent then Alice must have sent
the message since she is the only one who has access to her private key. On the
other hand, if the two messages are not equal then the message must have been
altered during transmission or forged.

In 1989, there was not a centralized online public key directory so PEM was
designed to operate without one. Each signed message included all of the certifi-
cates in the Chain needed to verify the message signature so when a message is
received, PEM implementations would store those accompanying certificates on
the recipient’s computer [8].

6 Secure Email with Fingerprint Recognition

S/MIME (Secure Multipurpose Internet Mail Extensions): When MIME
(Multipurpose Internet Mail Extensions) was introduced, RSA Data Security
re-implemented the PEM concept on top of the MIME standard and called it
S/MIME. MIME defines mechanisms for sending other kinds of information in
email, including text in languages other than English using character encodings
other than ASCII as well as 8-bit binary content such as files containing images,
sounds, movies, and computer programs [1].

Because of single root with a single certification policy proved to be problem-
atical in PEM, S/MIME implementations do not implement a strict hierarchy of
certificates, but instead accommodates any number of trusted CA (Certificate
Authority) [8]. S/MIME these days is integrated into many email clients like
Microsoft Outlook, Netscape Communicator, Lotus Notes, and others. How-
ever, S/MIME is not integrated into any web-based mail systems like Gmail,
Hotmail, Yahoo, etc. On web-based mail systems, S/MIME digitally signed
S/MIME messages appear as ordinary messages with an additional attachment
name smime.p7s, while S/MIME messages that are sealed with encryption are
indecipherable [8].

PGP (Pretty Good Privacy): In 1991, Phil Zimmermann released a program
called PGP that provides cryptographic privacy and authentication for email.
PGP uses public-key cryptography (as in PEM and S/MIME) and includes a
system which binds the public key to user identities [3]. If Alice wants to send
an encrypted message M to Bob using PGP then PGP does the following at
Alice’s side (| denotes concatenation):

1. Generates a shared key Ks.
2. Encrypts M using Ks to obtain C1 = Ks(M).
3. Encrypts M and Ks using Bob’s public key Kpublic

b which must be stored
in Alice’s public key database. After encrypting C1 and Ks, PGP obtains
C2 = Kpublic

b (C1|Ks).
4. Sends C2 to Bob.

When Bob receives C2, PGP does the following:

1. Decrypts C2 using Bob’s private key Kprivate
b stored on Bob’s computer.

After decrypting C2, PGP obtains C1|Ks = Kprivate
b (Kpublic

b (C2)).
2. Decrypts C1 using Ks to get M = Ks(C1).

A similar strategy is (by default) used to detect whether a message has been
altered since it was completed, or (also by default) whether it was actually sent
by the person/entity claimed to be the sender [3]. Digital signature algorithms
(e.g., RSA, DSA) and hash functions are used to create a digital signature for
a message in PGP. If Alice wants to send a digitally signed message M to Bob,
then PGP does the following:

1. Computes the hash for message M using a one-way hash function (e.g.,
SHA1, MD5, etc) to obtain H(M).

Secure Email with Fingerprint Recognition 7

2. Encrypts H(M) with Alice’s private key to obtain S = Kprivate
a (H(M)).

3. Sends M and S to Bob.

When Bob receives M and S, PGP does the following:

1. Decrypts S using Alice’s public key Kprivate
a stored on Bob’s computer. After

decrypting S, PGP obtains H(M) = Kpublic
a (Kprivate

a (H(M))).
2. Computes the hash for the sent M and check if its equal to H(M).

If the computed hash value and the hash sent are equal then Alice must have
sent the message since she is the only one who has access to her private key. On
the other hand, if the computed hash value and the hash sent are not equal then
the message must have been altered during transmission or forged. The primary
difference between PGP and PEM was the system’s approach to certification:
whereas PEM specified a centralized PKI (Public Key Infrastructure) with a
single root, PGP users can both independently certify keys as belonging to other
users, and decide to trust certification statements made by other users [8].

2.2 Current Research

 Sender’s Recipient’s Mailbox
(POP/IMAP)SMTP Sever (SS)
Server (RS)

 Internet

Sender (S) Recipient (R)

Fig. 2. Email messages are vulnerable to interception at many points

Simon L. Garfinkel [7] from the MIT Laboratory for Computer Science pro-
posed a new approach to email security that employs opportunistic encryption
and a security proxy to facilitate the opportunistic exchange of keys and en-
cryption of electronic mail. Garfinkel’s approach might offer less security than
established email systems that uses certificate authorities. However, the secu-
rity of his approach is equivalent to today’s systems based on PGP, PEM, and
S/MIME. Figure 2 shows the path followed by many mail messages on the In-
ternet today. Any message from a given sender S to a recipient R will usually
travel through the sender’s SMTP (Simple Mail Transfer Protocol) Server SS
and then be spooled for final delivery in a mailbox on the recipient’s POP (Post
Office Protocol) server RS [7]. The use of encryption might not be needed unless
there is a risk of:

8 Secure Email with Fingerprint Recognition

– Sender spoofing.
– Unauthorized message adulteration.
– Unauthorized message interception.

Garfinkel believes that the reason email encryption is rare, despite the risks, is
because of usability issues. If Alice wants to send an encrypted message M to
Bob then Alice must go through the following steps:

1. Determine if Bob wants to receive encrypted messages and has the appro-
priate tools to decrypt them.

2. Determine the email encryption Bob is using.
3. Obtain Bob’s public key Kpublic

b .
4. Verify that Kpublic

b belongs to Bob not to some other Internet user with a
similar name or email address.

5. Verify that Bob has the corresponding private key Kprivate
b .

6. Load the public key Kpublic
b into the email client.

7. Create a public and private key pair (Kpublic
a ,Kprivate

a) to sign the message
if the key pair does not exist already.

8. Compose the email message M .
9. Use Kprivate

a to sign the message to get C1 = Kprivate
a (M) and encrypt it

with Kpublic
b to get C2 = Kpublic

b (C1).
10. Send the encrypted and signed message C2.

When Bob receives the encrypted and signed message C2 then Bob must decrypt
it and verify that the sender is Alice. Bob must go through the following steps:

1. Provide the encrypted and signed message C2 as input to a suitable decryp-
tion program.

2. If the private key Kprivate
b is encrypted then Bob must enter a pass phrase

first to decrypt it. The decryption program will use Bob’s private key to
decrypt C2 and obtain C1 = Kprivate

b (C1).
3. Obtain Alice’s public key Kpublic

a and use it to verify the message. Applying
Alice’s public key to C1 will give us M = Kpublic

a (C1).
4. View the decrypted and verified message.

Additional barriers exist that prevent Alice from even systematically signing all
outgoing email messages as a matter of course, thanks to the way that programs
such Microsoft Outlook and Outlook Express handle signed messages received
in PGP or S/MIME format [7]. Outlook, for instance, displays signed messages
as a blank message with two attachments. The first attachment is for the signed
message and the second attachment is for the signature. Viewing signed message
this way can be quite cumbersome and as a result some people who receive
messages that are merely signed will ask the sender to stop sending digitally
signed messages because they are annoying to the recipient [7].

To overcome the usability problems in the above scenario, Garfinkel designed
an email encryption system called Stream that uses a zero-click interface. Stream
operates as a filter on outgoing email messages through the use of an SMTP

Secure Email with Fingerprint Recognition 9

proxy, and on incoming email messages through the use of a POP proxy [7].
Stream automatically performs the following actions on each outgoing message
M :

1. Determines Alice’s email address Ea.
2. If a public and private key pair does not exist for Ea then a key pair

(Kpublic
Ea

,Kprivate
Ea

) is created.
3. Places a copy of the public key Kpublic

Ea
in M ’s header.

4. Checks if the recipients Ri where i = 1, 2, 3, ..., n of message M have a public
key Kpublic

Ri
. If not then go to step 5, else do the following:

(a) Takes M ’s original mail header and encapsulates it within M .
(b) Adds the key fingerprint for each recipient’s encryption key to the en-

capsulated header.
(c) Creates a new sanitized mail header for M that contains a single To:

address and a nondescript Subject line.
(d) Encrypts M for the recipient to obtain Ci = Epublic

Ri
(M) and sends the

message through the SMTP server.
5. Sends M to Ri.

As you can see in scenario above, Stream provides opportunistic encryption so
the email message will be encrypted if it can be encrypted. This behavior mimics
the behavior of existing users of encryption: they use it if they can, but if they
can’t, they send their message anyway [7]. For each incoming message, Stream
performs the following actions:

1. Checks if the mail header has a public key Kpublic
Ea

for Alice. If yes then go
to step (a):
(a) The key is added to the user’s public key database.
(b) If the key is a new key for an existing email address then the user is

warned. This is similar to the warning SSH clients generates when an
SSH server’s public key sent does not exist in the SSH client’s public key
database.

2. If the message M received is encrypted as Ci then:
(a) Decrypts Ci = Epublic

Ri
(M) using Ri’s private key Eprivate

Ri
to obtain M .

(b) Un-encapsulates the encapsulated mail headers to obtain the key finger-
print for Alice’s public key.

(c) Verifies that the obtained key fingerprint for Alice’s public key matches
the one stored in the database.

(d) If the key fingerprint does not match, a warning is displayed to the
recipient.

While most PGP and S/MIME implementations leave messages encrypted ex-
cept when being viewed, Stream removes cryptographic protection once a mes-
sage reaches its final destination [7]. This transparent process can make the use
of such system more appealing to users. Users can protect the messages they
send across the Internet without worrying about generating keys, understanding
the use of public and private keys, etc. The only problem with Stream is that it

10 Secure Email with Fingerprint Recognition

only encrypts the message without signing it. Matching key fingerprint is only
effective when digital signature is used. Stream is clearly vulnerable to a man-
in-the-middle attack. An Adversary (Mallory) can intercept the messages sent
from Alice to Bob; generate her own messages, encrypt them with Bob’s public
key and send them to Bob as if they were sent from Alice. Since Stream does not
use any digital signature schemes, Bob will never know whether a given message
is sent from Alice or Mallory.

Ian Brown and C. R. Snow [6] proposed an approach which is similar to
the approach proposed by Garfinkel [7]. The authors argue that in some cir-
cumstances, the additional functionality can be provided by tapping into the
protocol exchanges rather than modifying the applications themselves to repre-
sent a more manageable approach to the problem of adding additional facilities
to applications [6]. As a result, Brown and Snow created a proxy sitting between
a mail client and server that signs and encrypts outgoing mail, and decrypts and
verifies incoming mail. This transparent approach can work with standard mail
protocols without requiring separate upgrading. The authors called their system
Enigma, after the World War II German encryption machine. Enigma (shown

Encryptor/

Decryptor/
Verifier

Mail
Agent

Signer

Server
"Real" POP3

Server
"Real" SMTP

 Internet

EnigmaUser
Workstation

Fig. 3. Enigma system configuration

in figure 3) has two parts: one to act as an SMTP server for outgoing mail, and
another to act as a POP3 server for incoming messages [6]. If Alice wants to
send a message to Bob and both Alice’s and Bob’s mail agent is configured to
use Engima as a proxy, then the following is done:

1. Alice composes a message using her mail agent.
2. The mail agent connects and forwards the message to the Encryptor/Signer

part of Enigma which searches for Bob’s public key on the local public key
database and encrypts the message using Bob’s public key. The Encryp-
tor/Signer then uses Alice’s private key (which must be stored in Engima)
to sign the message.

Secure Email with Fingerprint Recognition 11

3. Enigma uses SMTP to send the message to the real SMTP server.
4. Bob starts his mail agent, and the mail agent connects to the Decryp-

tor/Verifier part of Enigma which connects to the real POP3 server to
download Bob’s messages. If a message is encrypted and the recipient’s pri-
vate key is available, it will be decrypted [6]. If a message is signed and the
signer’s public key is available, the signature will be checked [6]. Once de-
cryption and signature verification are done, the Decryptor/Verifier forwards
the messages to Bob’s mail agent.

5. Bob views Alice’s message.

3 Approach

After discussing a number of technologies and approaches to email security,
we can conclude that the use of cryptographic techniques in Internet mail has
proved to be successful only when the process of encrypting/decrypting and
signing/verifying email is transparent. Keeping the amount of user interaction
to the minimum and providing security functionality for users without having
them learn a complex new user interface or algorithm is essential.

We present a new approach to email security that uses fingerprint recognition
to authenticate users and provide them with a transparent process of signing and
verifying email messages. The idea is to enroll a user fingerprint, associate the
fingerprint with a record that is unique to that user, and finally use the user’s
fingerprint and unique record to authenticate the user, sign the user’s email
message, and verify other users’ email messages. Our approach was implemented
as an email client called SEFR. A detailed description of our SEFR is described
below.

3.1 Components

Environment: SEFR was designed and implemented on a T2400 processor
running Windows XP. Visual Studio 2005 was the Integrated Development En-
vironment (IDE) used to write to code, and design the Graphical User Inter-
faces. The code was entirely written in C and used the Win32 API, OpenSSL
and MySQL libraries.

Mail servers and accounts: Gmail is a web mail system created by Google
Inc. We used Gmail’s mail servers to send emails and retrieve emails from a user’s
inbox. Two test accounts were created on Gmail: amaobied and sefr.obied. To
send emails from our email client, we used Gmail’s SMTP (Simple Mail Transfer
Protocol) server: smtp.gmail.com which is listening on port 465. To download
emails to our email client, we used Gmail’s POP (Post Office Protocol) server:
pop.gmail.com which is listening on port 995. To connect to Gmail’s mail servers,
you will have to authenticate successfully to it. Furthermore, Gmail’s mail servers
require email clients to set up a secure tunnel via SSL before attempting to
communicate with them. The test accounts that were created allowed us to

12 Secure Email with Fingerprint Recognition

authenticate successfully to the mail servers. We installed the OpenSSL library
on the machine where the email client is running; used it to set up the ciphers,
do the SSL handshake, and route all the traffic via a secure tunnel. Gmail’s
SMTP server required that the username and password of a Gmail account be
sent in base 64. We simply used the OpenSSL library to encode the username
and password in base 64 before sending them to the SMTP server.

Database: A database was required to store the user’s Gmail account informa-
tion (username and password), the user’s fingerprint, and the hash value of emails
sent. We used a MySQL server hosted on dbs2.cpsc.ucalgary.ca. The database
contained two tables: account and email. The account table had the following
fields: username (varchar), password (varchar), fingerprint image (large blob),
hash of fingerprint image (varchar) and size of fingerprint image (integer). The
email table had the following fields: email from (varchar), email to (varchar),
and email hash (varchar). A MySQL ODBC driver and library have been in-
stalled where the email client is running to enable it to communicate with the
MySQL server.

Fingerprints: We were not able to use the fingerprint scanner in the Biometric
Laboratory (BT lab) since it lacks an API that one can work with to interface
with it and acquire the fingerprint images directly via the email client. We over-
come this problem by simulating the scanner, so instead of asking the user to
present his fingerprint to the scanner, we asked the user to provide the path to
the fingerprint image stored on disk.

We acquired 6 fingerprint images using the optical fingerprint scanner in
the BT lab. The fingerprint images were used to simulate the availability of a
fingerprint scanner.

3.2 Design and Implementation

Enroller: In the registration process, users have to provide the enroller with
their Gmail account information (username and password), and the path to
their fingerprint image. Once the enroller acquires the information correctly, the
enroller stores them in the MySQL database. The Secure Hash Algorithm (SHA-
1) is used to hash the password and store the hash value in the database instead
of the password itself to enhance security. SHA-1 is also used to compute a hash
value of the fingerprint image to be used in the matching process.

Users can use the enroller anytime they want to check if their account in-
formation and fingerprint have been already registered or not. In the retrieve
process, the enroller takes the username and password, and checks if a finger-
print has already been registered under the given username and password. If yes,
then the enroller downloads the fingerprint image and displays it to the user in
the enroller’s GUI (Graphical User Interface). Figure 6 shows the register feature
and figure 7 shows the retrieve feature.

Secure Email with Fingerprint Recognition 13

If a user tries to register using an account that already exists then SEFR
displays an error message. Also if a user tries to retrieve the fingerprint and
either the username or password he provides are invalid then SEFR displays an
error message. When a user registers, the path to the fingerprint is checked. If
the path is invalid or does not exist then SEFR displays an error message.

Login: Since users tend to forget their passwords or simply use weak passwords
that allow an adversary to break into their email accounts, we used a second
authentication layer that uses fingerprints. By having 2 layers of authentication
(knowledge-based and biometric-based), breaking into an email account becomes
very difficult. No one will be able to break into an email account on SEFR unless
he has your account username and password, and your fingerprint. Figure 8 shows
SEFR’s login screen, figure 9 shows an error message when an invalid username
and/or password error message are provided, and figure 10 shows that an invalid
fingerprint image has been provided.

When a user provides his username and password, SEFR attempts to connect
via a secure tunnel to Gmail’s POP and SMTP servers using the given username
and password. SEFR uses the syntax described in the POP and SMTP RFC
(Request For Comment) documents to talk directly with the servers. If any of
the servers returns a soft error (e.g., 4xx error) or a hard error (e.g., 5xx error),
then SEFR exits immediately. If any of the servers return a message saying
that the given username and/or password are invalid, then SEFR aborts the
connection and displays an error message to the user.

Inbox: Once the user successfully logs in, SEFR will send commands to Gmail’s
POP server to download the user’s inbox. The commands sent to the server
follows the syntax described in the POP RFC document [2]. Figure 11 shows
SEFR’s inbox GUI.

Sending email messages: When a user, say Alice, who has a Gmail account
(amaobied) tries to send a message using SEFR, Alice will have to authenticate
to SEFR using her fingerprint image which must be stored in the database. The
idea of having to authenticate yourself every time you want to send an email
message is to provide integrity and authorship of email messages. If everyone
on the Internet is using SEFR to send their email messages then we will know
for sure that the email messages we receive must have been sent by the person
who claims to have sent them. This is due to the fact that forging fingerprints
is difficult.

When Alice successfully authenticates to SEFR while trying to send an email
message, SEFR strips from the message the following: tabs, new line feeds, car-
riage returns, spaces, and form feeds. For example a message which has the
following form:

Hi,

14 Secure Email with Fingerprint Recognition

Welcome to reality.

Becomes:

Hi,Welcometoreality.

After transforming the message, SEFR inserts into the email table: the email
address of Alice, the email address in the “To:” field, and the hash value of the
transformed message hashed using SHA-1.

SEFR uses the SMTP commands described in the SMTP RFC document [4]
to send a message via Gmail’s SMTP server. Figures 12, 13, and 14 show SEFR’s
send mail features and error checking.

Verifying email message: Suppose Alice has a Gmail account (amaobied)
and Bob has a Gmail account (sefr.obied). If Alice was able to send a message
to Bob then Alice must be a legitimate user on SEFR since her fingerprint image
is stored in the database, and has been used to invoke the hash function used
to sign her message. When Bob successfully authenticates to SEFR, Bob will be
able view his inbox. Every email message in the inbox will have a verification
status: Success or Failure. The verification is done automatically by SEFR. To
verify a message, SEFR does the following:

1. Downloads the email message from Gmail’s POP server using the commands
described in the POP RFC document [2].

2. Parses the email message and retrieves the email address in the “To:” and
“From:” fields of the email message.

3. Strips the tabs, spaces, line feeds, form feeds, and carriage returns from the
email body.

4. Computes the hash of the stripped message using SHA-1.
5. Checks if the retrieved email address has the hash value associated with it

in the database. If yes, then the verification status is set to Success else it is
set to Failure.

3.3 Testing

We tested SEFR’s functionality by sending a valid email message and a forged
one. We forged an email message by deleting its entry in the database. This
means that when SEFR tries to validate the authenticity of the email message,
SEFR will not find its entry in the database and hence should display a warning.
Figure 15 and 16 shows the valid email and forged email that were used and sent.

4 Benefits

In the previous section, we presented a new approach to email security imple-
mented as an email client called SEFR which uses fingerprint recognition and

Secure Email with Fingerprint Recognition 15

Receiver

Sender

Enroller

Database

Fingerprint
Local
Computer

SEFR

Internet

Images
Gmail SMTP

Server

Gmail POP
Server

Fig. 4. SEFR’s high-level design

cryptographic hash functions. The benefits of such approach are described in the
following sections.

4.1 Secure email access

In traditional email systems, you authenticate yourself using a username and a
password. If an adversary was able to guess your username and password or steal
them, then the adversary will be able to access your email account, view your
email messages, and send email messages. SEFR has 2 layers of authentication:
knowledge-based (using passwords) and biometric-based (using fingerprints). If
an adversary knows your username and password then the adversary will be
able to bypass the first authentication layer. However, the adversary will not be
able to bypass the second layer since he does not have your fingerprint. Forging
fingerprints is not impossible. However, it is known that using biometric-based
authentication makes it harder for an adversary to break the authentication
system.

4.2 Prevent email spoofing

We demonstrated in figure 1 how emails can be spoofed easily. SEFR does not
allow users to send emails unless they successfully authenticate using their finger-
prints. Once a user successfully authenticates, a record is added to the database
to keep track of who sent what and to whom. Furthermore, SEFR associates
that record with the hash value of the sent message. If an adversary tries to
send a spoofed email from cpsc601.20@cpsc.ucalgary.ca as shown in figure 1,
then SEFR will first hash the message body as described before; then SEFR

16 Secure Email with Fingerprint Recognition

will try to find a record in the database that has cpsc601.20@cpsc.ucalgary.ca
associated with the computed hash. Since such email address or hash value does
not exist then SEFR will display a warning to the user.

4.3 Prevent against man-in-the-middle attacks

To demonstrate how SEFR prevent against man-in-the-middle attacks, consider
the following scenario. Suppose that Alice, and Bob are legitimate users in SEFR.
If Alice wants to send a signed message to Bob then the following is done:

1. Alice starts SEFR.
2. SEFR asks Alice to provide her fingerprint.
3. Alice provides SEFR with her fingerprint. Since Alice is a legitimate user

then SEFR will allow Alice to login and view her inbox.
4. Alice selects the compose message option and starts writing a message to

Bob.
5. Alice selects the send message option and SEFR asks Alice to provide her

fingerprint.
6. Alice provides SEFR with her fingerprint. Since Alice is again a legitimate

user then SEFR will create a hash value of the composed message using
SHA-1, stores Alice’s email address and hash value in the database, and
send the message to Bob’s email address via SMTP.

7. Bob starts SEFR.
8. SEFR asks Bob to provide his fingerprint.
9. Bob provides SEFR with his fingerprint. Since Bob is a legitimate user then

SEFR will allow Bob to login and view his inbox.
10. SEFR starts downloading Bob’s email messages via IMAP.
11. SEFR scans through the email messages and finds Alice’s message. Since

Alice’s message was sent via SEFR then SEFR will create a hash value of
the composed message using SHA-1, and check the database to see if the
created hash matches the hash values associated with Alice’s email address.
If there is match then SEFR sets the verification status to success. Otherwise,
SEFR sets the verification status to failure.

12. Bob views Alice’s message and checks the verification flag. Since it was signed
by Alice then Bob will see the status set to success.

What if Mallory was able to intercept SEFR in step 10 above and modifies Alice’s
message? In step 11 above, when SEFR creates a hash value of the composed
message using SHA-1, the created hash value will be different because the mes-
sage was altered. The property of one-way function is that it is computationally
infeasible to find x and y such that H(x) = H(y) so if Mallory modifies one
character in the original message then the created hash value will change. When
SEFR checks the database to see if the created hash matches the hash values as-
sociated with Alice’s email address, SEFR will not find it. Therefore, SEFR will
set the verification status to Failure and Bob will be notified that the message
was altered in transit.

Secure Email with Fingerprint Recognition 17

5 Future Work

The course in general and this project in particular have inspired us with a
number of interesting ideas that one can use to change the way authentication
is done these days. Biometric-based authentication has the potential to be the
next big thing of the World Wide Web.

We have been involved in developing a couple of open source plug-ins (SSH
and POP(s)/IMAP(s)) for a software called pGINA (http://www.pgina.org)
that stands for pluggable Graphical Identification and Authentication. PGina
replaces Microsoft’s GINA DLL (Dynamic Link Library) and loads plug-ins that
can use any method of authentication. PGina is used at the University of Cal-
gary, and a number of Universities and organizations around the world. We plan
to develop in the future an open source fingerprint plug in to help people learn
more about biometric authentication, and inspire them to develop applications
based on biometrics.

Another interesting idea which we plan to examine in depth is using biomet-
rics to defeat spam. Spam is unsolicited email sent by a third party which can
be offensive, fraudulent (e.g., phishing, scam), and malicious (e.g., carry viruses,
worms, spyware, or cause denial of service attacks). Spam consumes computer
and network resources, and wastes human time and money. A number of anti-
spam approaches have been proposed and developed. However, most of these
approaches fail to defeat spam completely or track spammers. To our knowl-
edge, no one has proposed how biometrics can be used to defeat spam. One
of the most important things that anti-spam researchers try to do is to know
if an email was sent by a real human or an automated software. Some of the
proposed methods use Challenge-Response mechanisms. However, such methods
are considered annoying since users tend not to like sending a response after a
challenge. If one enforces the use of biometrics with emails (as proposed in our
approach) then we can know for sure that an email is coming from a human.
Hence, be able to identify and classify spam easily.

6 Conclusion

Despite the widespread availability of public key cryptographically protected
email, secure messaging is not widely practised. This is due to technical, social,
and usability issues. Cryptographically protected email uses traditional authen-
tication schemes that are vulnerable to many attacks. The security of the email
system can be broken if an adversary is able to crack the password that protects
the private key of a user, or modify the public key of a user.

In this report, we presented a new approach to email security that allows
users to secure access to their email accounts, and messages. Furthermore, the
presented approach allows users to sign and verify email messages effectively and
without the use of public key cryptographic techniques. The presented approach
uses fingerprints which provide a better and stronger factor of authentication.
Authenticating users based on what they are instead of what they know or what

18 Secure Email with Fingerprint Recognition

they have provides users with a more effective, convenient, and secure way to
access their email account and messages. We also presented a method that uses
cryptographic hash functions which is not computationally expensive to compute
to provide email users with an effective way to sign and verify email messages.

The presented approach does not only have the potential to protect email
accounts and messages but it also have the potential to protect users against
spam. Automated spam software will cease to work if SEFR is used since live
fingerprints have to be presented before emails are sent.

References

1. RFC 1521, MIMIE, http://www.faqs.org/rfcs/rfc1521.html.
2. RFC 1939, Post Office Protocol, Version 3, http://www.faqs.org/rfcs/rfc1939.html.
3. RFC 1991, PGP Message Exchange Formats,

http://www.faqs.org/rfcs/rfc1991.html.
4. RFC 2821, Simple Mail Transfer Protocol, http://www.ietf.org/rfc/rfc2821.txt.
5. H. Berghel. Email–the good, the bad, and the ugly. Communications of the ACM,

40(4):11 – 15, 1997.
6. I. Brown and C. R. Snow. A proxy approach to e-mail security. Software Practice

and Experience, 29(12):1049 – 1060, 1999.
7. S. L. Garfinkel. Enabling email confidentiality through the use of opportunistic

encryption. In Proc. of the 2003 annual national conference on Digital government
research, pages 1 – 4, 2003.

8. S. L. Garfinkel, D. Margrave, J. I. Schiller, E. Nordlander, and R. C. Miller. How
to make secure email easier to use. In Proc. of the SIGCHI conference on Human
factors in computing systems, pages 701 – 710, 2005.

9. P. Gutmann. Why isn’t the internet secure yet, dammit. In Proc. of the AusCERT
Asia Pacific Information Technology Security Conference 2004; Computer Secu-
rity: Are we there yet?, pages 71 – 79, 2004.

10. A. K. Jain, A. Ross, and S. Prabhakar. An introduction to biometric recognition. In
Proc. of IEEE Transactions on Circuits and Systems for Video Technology, Special
Issue on Image- and Video-Based Biometrics, volume 14, pages 4 – 20, 2004.

11. D. Maltoni, D. Maio, A. K. Jain, and S. Prabhakar. Handbook of Fingerprint
Recogition. Springer, 2003.

12. I. Ploeg. Written on the body: biometrics and identity. ACM SIGCAS Computers
and Society, 29(1):37 – 44, 1999.

13. A. Suglura and Y. Koseki. A user interface using fingerprint recognition: Hold-
ing commands and data objects on fingers. In Proc. of the 11th annual ACM
symposium on User Interface software and technology, pages 71 – 79, 1998.

14. A. Whitten and J. D. Tygar. Why Johnny can’t encrypt: A usability evaluation
of PGP 5.0. In Proc. of the 8th USENIX Security Symposium, 1999.

15. J. A. Zdziarski. Ending Spam. No Starch Press, 2005.

